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Abstract

For wildlife inhabiting snowy environments, snow properties such as onset

date, depth, strength, and distribution can influence many aspects of ecology,

including movement, community dynamics, energy expenditure, and forage

accessibility. As a result, snow plays a considerable role in individual fitness

and ultimately population dynamics, and its evaluation is, therefore, important

for comprehensive understanding of ecosystem processes in regions experienc-

ing snow. Such understanding, and particularly study of how wildlife–snow
relationships may be changing, grows more urgent as winter processes become
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less predictable and often more extreme under global climate change. How-

ever, studying and monitoring wildlife–snow relationships continue to be chal-

lenging because characterizing snow, an inherently complex and constantly

changing environmental feature, and identifying, accessing, and applying rele-

vant snow information at appropriate spatial and temporal scales, often require a

detailed understanding of physical snow science and technologies that typically lie

outside the expertise of wildlife researchers and managers. We argue that thor-

oughly assessing the role of snow in wildlife ecology requires substantive collabora-

tion between researchers with expertise in each of these two fields, leveraging the

discipline-specific knowledge brought by both wildlife and snow professionals. To

facilitate this collaboration and encourage more effective exploration of wildlife–
snow questions, we provide a five-step protocol: (1) identify relevant snow property

information; (2) specify spatial, temporal, and informational requirements; (3) build

the necessary datasets; (4) implement quality control procedures; and (5) incorpo-

rate snow information into wildlife analyses. Additionally, we explore the types of

snow information that can be used within this collaborative framework. We illus-

trate, in the context of two examples, field observations, remote-sensing datasets,

and four example modeling tools that simulate spatiotemporal snow property distri-

butions and, in some cases, evolutions. For each type of snow data, we highlight

the collaborative opportunities for wildlife and snow professionals when designing

snow data collection efforts, processing snow remote sensing products, producing

tailored snow datasets, and applying the resulting snow information in wildlife ana-

lyses. We seek to provide a clear path for wildlife professionals to address wildlife–
snow questions and improve ecological inference by integrating the best available

snow science through collaboration with snow professionals.

KEYWORD S
collaboration, data–model fusion, interdisciplinary, snow data, snow modeling, SnowModel,
wildlife ecology, wildlife management, wildlife research, wildlife–snow, winter

MOTIVATION

The physical properties of snow, and their spatial distribu-
tion and temporal evolution, influence many ecological
processes (Figure 1). For wildlife, snow properties can
impact individuals by affecting movements and behaviors
(Balkenhol et al., 2020; Berman et al., 2019; Boelman
et al., 2017; Chimienti et al., 2020; Coady, 1974; Droghini &
Boutin, 2018; Mahoney et al., 2018; Oliver et al., 2018; Oliver
et al., 2020; Pedersen et al., 2021); predator–prey interactions
(Horne et al., 2019; Nelson & Mech, 1986; Peers et al., 2020;
Sirén et al., 2021); energetics related to foraging (Dumont
et al., 2005; Fancy & White, 1985), locomotion (Fancy &
White, 1987; Gurarie et al., 2019; Lundmark & Ball, 2008;
Parker et al., 1984), and thermoregulation (Karniski, 2014;
Pruitt Jr., 1957; Thompson III & Fritzell, 1988); forage acces-
sibility (Hupp & Braun, 1989; Takatsuki et al., 1995;

Visscher et al., 2006; White et al., 2009); as well as ground
(Boelman et al., 2016) and subnivean habitat use
(Bilodeau et al., 2013; Glass et al., 2021; Petty
et al., 2015). Additionally, the effects of snow on individ-
ual survival (Hurley et al., 2017; Reinking et al., 2018;
Shipley et al., 2020) and reproduction (Apollonio
et al., 2013; Barnowe-Meyer et al., 2011; Liston
et al., 2016; Schmidt et al., 2019) can ultimately alter
population-level demographics (Apollonio et al., 2013;
Berteaux et al., 2017; Boelman et al., 2019; Cosgrove
et al., 2021; Desforges et al., 2021; Van de Kerk
et al., 2018; Van de Kerk et al., 2020). Effective evalua-
tion of such wildlife–snow relationships requires identi-
fication, acquisition, and incorporation of appropriate
and relevant snow property information.

Many wildlife professionals have an in-depth knowl-
edge of how snow influences the species or communities
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that they study or manage. However, the complex and
constantly changing nature of snow makes its inclusion
in wildlife research and management projects challeng-
ing. Effective evaluation of wildlife–snow relationships,
and monitoring of these relationships through time,
requires identifying and understanding the specific snow
properties that are relevant for each unique application
and appropriately applying data that represent that prop-
erty in analyses. Snow properties ranging from depth
(i.e., the height of the snow surface above the ground sur-
face) to more complex properties, such as strength
(i.e., the ability of the snow surface to support the force
an animal exerts upon it), impact wildlife across ecosys-
tems (Crupi et al., 2020; Pozzanghera et al., 2016; Sivy
et al., 2018) and are often highly dynamic in space and
time. Accounting for this complexity demands an inti-
mate knowledge of snow science beyond that of most
practicing wildlife professionals.

To use biologically relevant snow data in their ana-
lyses, wildlife professionals must specify dataset: (1) spatial
and temporal domains (e.g., multiple study areas and his-
torical, current, or future snowpacks), (2) spatial and tem-
poral resolutions (e.g., several spatial scales and hourly,
daily, monthly, or yearly snow conditions), and (3) unique
snow variables (e.g., depth, number of rain-on-snow events

each year, or strength). The technical expertise required to
make these decisions relies on specific knowledge of the
physics driving snow property evolution, field measure-
ment procedures, snow remote-sensing datasets, and pro-
gramming environments and modeling tools to which
wildlife professionals may not have access. These chal-
lenges can be further confounded by limited project
funding and logistical constraints and can lead to the
inclusion of easily accessible, but less biologically mean-
ingful, snow information in wildlife research and manage-
ment efforts (as described in Brennan et al., 2013; Magoun
et al., 2017). We believe that by leveraging the discipline-
specific expertise of professionals from both the wildlife
and snow fields, we can overcome these obstacles and
advance our understanding of how snow influences
wildlife.

Incentive for collaboration

Across science and management fields, interdisciplinary
and diverse collaboration produces stronger, more innova-
tive outcomes (Hong & Page, 2004; Schmidt et al., 2017).
This innovation can be crucial in addressing major societal
challenges, such as climate change and loss of biodiversity,

F I GURE 1 Example wildlife–snow interactions. (a) Predator–prey (Canada lynx–snowshoe hare [Lynx canadensis–Lepus americanus])

interactions in snow and subnivean habitat use by meadow vole (Microtus pennsylvanicus). (b) Ungulate (pronghorn [Antilocapra

americana]) movement through snow and forage accessibility above the snowpack for greater sage-grouse (Centrocercus urophasianus).

Graphic courtesy of Flynn Melendy-Collier
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and may provide additional benefits, including greater
citation impact (Yegros-Yegros et al., 2015), cost-sharing of
resources, and simultaneous advancement across fields.
Nearly 175 years ago, this principle was advocated by
prominent philosopher, John Stuart Mills, when he
emphasized,

“It is hardly possible to overrate the value …
of placing human beings in contact with per-
sons dissimilar to themselves, and with
modes of thought and action unlike those
with which they are familiar … Such commu-
nication has always been, and is particularly
in the present age, one of the primary
sources of progress. (Mills, 1848)”

Today, such multi-institutional, cross-disciplinary research
is encouraged and frequently required by research funding
bodies. For example, the United States National Science
Foundation (NSF) lists collaboration as a “core value,”
and often solicits research projects evaluating interdisci-
plinary questions (NSF, 2018). Despite the well-recognized
benefits of and frequent financial support for collabora-
tion, integration of different scientific backgrounds, partic-
ularly in ecological studies, remains challenging; this is
usually because scientific outlets (e.g., conferences and
journals), physical workplaces, and programmatic educa-
tion structures remain broadly segregated by discipline
(Campbell, 2005; Mair et al., 2018; Schmidt et al., 2017).
We seek to facilitate collaboration by providing a formal-
ized structure to address wildlife–snow questions through
a stronger integration of wildlife and snow sciences.

Moving forward together

We describe a five-step, systematic protocol to identify,
access, and apply the most appropriate snow informa-
tion: (1) identify relevant snow property information;
(2) specify spatial, temporal, and informational require-
ments; (3) build the necessary datasets; (4) implement
quality control procedures; and (5) incorporate snow
information into wildlife analyses. To demonstrate the
practical utility of these five steps, we apply them to an
example investigation of the fitness consequences of
snow roosting by ruffed grouse (Bonasa umbellus; Boxes
1–5: Ruffed grouse example). We use the terms “wildlife
professionals” and “snow professionals” throughout,
with the intention of encompassing all researchers and
natural resource managers spanning the disciplines of
wildlife ecology and snow science, including research
biologists, field biologists, wildlife managers, conserva-
tionists, climate modelers, hydrologists, avalanche

forecasters, and others. By working with snow profes-
sionals, wildlife professionals can take advantage of the
wealth of snow information that has, until now,
remained largely within the snow science community to
answer important questions that have previously been
elusive. This collaborative framework can be applied to
a variety of objectives, from basic ecological research
and monitoring to the development of wildlife manage-
ment strategies.

Finally, to aid in the production of more impactful,
higher quality research and management outcomes, we
provide examples of using three types of snow informa-
tion (field observations, remote sensing information,
and modeled datasets) that can be employed when fol-
lowing this collaborative, systematic approach. We dis-
cuss these data types using an example of the Greater
Yellowstone Ecosystem (GYE) wolf–elk (Canis lupus–
Cervus canadensis) predator–prey relationship to show-
case their potential use in real-world projects; for each
type of snow information, we highlight the benefits of
working collaboratively (Boxes 6–8: GYE example). In
this review, we focus on time-evolving, spatially dis-
tributed information and methodologies, as opposed to
point observations, since these former data better
reflect the dynamic nature of wildlife–snow interac-
tions and are usually of the greatest interest and utility
to wildlife professionals. To this end, we present a
detailed comparison of four snow modeling tools, cho-
sen to exemplify the general range in complexity of
such systems. These snow distribution and snow evolu-
tion modeling systems all assimilate (i.e., synthesize)
snow observations as part of their simulation process,
thereby pulling model results closer to observed snow
characteristics; these tools are referred to as data–
model fusion systems. A key component of this data–
model fusion approach is that wildlife and snow pro-
fessionals use their unique scientific backgrounds to
work together to define, produce, and incorporate the
most useful snow datasets for each specific wildlife–
snow project.

WILDLIFE–SNOW
COLLABORATION IN FIVE STEPS

Step 1: Identify relevant snow properties

The snow properties relevant to any wildlife application
depend on the research questions and can be informed
by literature review, Traditional Ecological Knowledge,
field experience and measurements, model studies and
outputs, and anecdotal evidence (Bélisle et al., 2018;
Cuyler et al., 2020; Huntington, 2000; Sagarin &
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Pauchard, 2010). In addition to identifying fundamental
snow properties that are often important to consider,
such as depth, a specific wildlife–snow application may
also benefit from including value-added synthesis vari-
ables that better describe wildlife-relevant snow proper-
ties by combining multiple snow characteristics.

For example, consider the common hydrologic vari-
able, snow water equivalent (SWE), which represents the
depth of water produced if the snowpack is melted at a
given point and time. From a hydrologic perspective, max-
imum winter SWE approximates the amount of meltwater
that will be available as runoff in the spring (Li
et al., 2017; Sexstone et al., 2021), and this variable repre-
sents one possible metric to characterize winter severity in
terms of maximum winter snow accumulation. However,
from a wildlife perspective, additional information may be
required to define and quantify winter severity in a more
meaningful way. Variables representing combinations of
time and snow properties, such as the total number of
days in the season with snow deeper than some depth
threshold for a specific species (e.g., percent of limb length
or shoulder height), may provide more relevant measures
of snow season severity (Feltner, 2021). Other value-added,
synthesis variables that are representative of winter sever-
ity in wildlife–snow applications might include a

combination of spatially and temporally distributed vari-
ables such as snow depth, date of first snow accumulation,
wind speed, temperature, length of the snow-covered
period, and snow-free date.

Through interdisciplinary work and discussions
(Figure 2), wildlife and snow professionals can collabora-
tively determine which snow properties should be defined
and quantified to address research and management objec-
tives. Moreover, it is crucial that sufficient time be devoted
to ensuring that all team members understand the termi-
nology being used to describe the snow variables of interest
and the precise snow properties that are being character-
ized by those variables. This initial time investment can
minimize breakdowns in communication that may cause
problems later in the collaborative process. Step 1 is further
illustrated in Box 1: Ruffed grouse example.

Step 2: Specify spatial, temporal, and
informational requirements

Fit-for-purpose snow data

After identifying relevant snow properties, wildlife and
snow professionals must determine the appropriate

F I GURE 2 (a) Wildlife and snow professionals conducting field research side-by-side to collaboratively collect data on wildlife–snow
interactions. (b) Wildlife and snow professionals in subsequent discussion after a collaborative day in the field to develop, refine, and execute

high-quality, interdisciplinary wildlife–snow science. Graphic courtesy of Flynn Melendy-Collier
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spatial, temporal, and informational specifications for the
datasets describing those snow attributes. Because both
wildlife and snow processes occur at various spatial and
temporal scales, this requires a hierarchical systems
approach (O’Neill et al., 1986; Urban et al., 1987), priori-
tizing consideration of scales and resolutions that will
best address research and management objectives and
most appropriately represent the snow properties of inter-
est given the unique study region. Additionally, project
resources, such as computational capacity, time, person-
nel, and funding, may affect some of these decisions. Cor-
rectly specifying dataset dimensions involves initial team
discussion of data expectations, ensuring early transpar-
ency regarding the utility and limitations of available
snow information resources. Snow data spanning the
largest possible area, at the finest spatial and temporal
scales, for the longest time period, and detailing the
greatest number of snow variables, would likely strain
project resources and add unnecessary complexity to
analyses.

The spatial, temporal, and informational details of
generalized, one-size-fits-all snow products are often
poorly suited to address individual project needs. There-
fore, we advocate tailoring snow data specifications to
each unique wildlife–snow application. Operational snow

data products (i.e., datasets created for meteorological
and hydrological applications that are regularly produced
and publicly available) often seem like a viable solution
because they are readily accessible. In some cases, these
may be appropriate, depending on the individual
wildlife–snow application. However, fit-for-purpose snow
information typically allows a far more precise evaluation
of wildlife–snow relationships and maximizes the utility
and efficiency of those data (Boelman et al., 2019).

Defining dataset specifications

For each wildlife–snow research and management ques-
tion, the specific wildlife processes of interest, and the
hierarchical system scale at which those occur, play a
driving role in determining the appropriate spatial and
temporal scale at which to evaluate wildlife–snow inter-
actions (O’Neill et al., 1986; Urban et al., 1987). Similarly,
the distribution of physiographic features controlling
snow conditions in the study area, the spatial and tempo-
ral scales over which snow properties of interest vary,
and the spatial and temporal scales at which project-
specific snow information is best represented will be
unique for each application. Ultimately, the resolution of

BOX 1 Ruffed grouse example

In the northern portions of their range, snow can serve as important winter thermoregulation habitat and
refugia from predators for ruffed grouse. Snow, as a roosting substrate, reduces winter metabolic requirements
more than other roosting microsite types, minimizes physiological stress associated with low temperatures, and
is preferred when available at sufficient depths (Shipley et al., 2019; Thompson III & Fritzell, 1988; Whitaker &
Stauffer, 2003). Moreover, it provides cover from avian predators (Heinrich, 2017; Marjakangas, 1990). There-
fore, snow roosting has fitness consequences for ruffed grouse because it influences overwinter survival
(Shipley et al., 2020). Understanding the effects of snow roosting habitat on ruffed grouse survival would
require identification of candidate snow properties with the potential to mediate this relationship. Depth is a
clear choice, as is persistence (i.e., the length of time an area remains snow-covered). However, more compli-
cated measures, like snow softness or surface crusting (related to the capacity for grouse to bury themselves
within the snowpack) or the thermal resistance (related to the insulative properties of the snowpack), may also
impact roost site quality and associated grouse survival (Devers et al., 2007; Whitaker & Stauffer, 2003). Assess-
ment of these properties would likely lead to a more nuanced and accurate understanding of the influence of
snow roosting habitat characteristics on ruffed grouse fitness.

Moreover, the wildlife and snow professionals in this example may require unique, synthesized snow infor-
mation describing value-added combinations of these properties, such as a variable that indicates the number
of days when both depth and softness met or exceeded certain thresholds required for ideal winter roosting hab-
itat. In collaboration with wildlife professionals, snow professionals could provide insight on how to create and
represent these value-added covariates. For example, snow density could serve as an adequate index for snow
softness, but the validity of this assumption depends on the processes controlling density evolution. Snow pro-
fessionals can employ a comprehensive understanding of physical snowpack processes and properties to make
this determination.
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a snow dataset, therefore, balances the scale of snow prop-
erty distribution and evolution with the scale at which that
snow property is likely to influence ecology, and particu-
larly the resolution at which that relationship may be cap-
tured by available wildlife data (e.g., frequency of GPS
location fixes).

Landscape features, such as vegetation structure, and
topographic slope, aspect, and elevation, can drive envi-
ronmental conditions like wind speeds, air temperatures,
and snowfall quantities (Broxton et al., 2014; Elder
et al., 1991; Liston et al., 2002; Liston et al., 2007;
Sturm & Wagner, 2010). These conditions impact the
evolution of snow properties, such as depth, density,
strength, stratigraphy, and ice layers (Elder et al., 1991;
Elder et al., 1998; Sturm et al., 1995; Sturm &
Liston, 2021). Generally, if the distribution of these snow-
controlling features is relatively homogenous, a snow
dataset of coarser spatial resolution may appropriately
represent conditions; however, if extensive spatial hetero-
geneity exists, finer spatial resolution datasets may be
required (Daly, 2006; Watson, Anderson, et al., 2006).
Moreover, defining dataset requirements is often best
achieved when snow professionals can visit the study

area alongside wildlife professionals to gain a stronger
understanding of the important processes occurring in
the wildlife–snow system and initiate discussions of study
design to collect and couple wildlife and snow observa-
tions (Figure 2). Step 2 is further illustrated in Box 2:
Ruffed grouse example.

Step 3: Build the necessary datasets

Once wildlife and snow professionals have identified the
types of snow information needed and determined the spa-
tial, temporal, and informational requirements, it is then
necessary to determine if these project-specific data exist.
If they do exist, access to the information could prove chal-
lenging (e.g., requiring a fee or certain account credentials
to download), and it may be necessary to further process
data for use in wildlife analyses. However, the required,
relevant datasets often do not exist (Boelman et al., 2019;
Rose et al., 2015). In this case, snow professionals can help
to determine if the use of related, but different, ready-
made information will be sufficient, or if field data collec-
tion, remote sensing snow information, snow modeling

BOX 2 Ruffed grouse example

Dataset specifications depend on the scope of the research project. The main objective of the example ruffed
grouse project is to create spatial and temporal maps of adequate extent and resolution to describe the snow
habitat distribution and quality for several specific years for comparison with grouse survival data. This goal
requires accounting for local, daily (or sub-daily) snow-evolution processes, like wind and solar radiation, that
impact specific snow properties, such as depth and softness, at the microclimate scale. In contrast, if the goal was
to estimate inter-annual variability and long-term trends (e.g., decadal) in snow habitat distribution and quality
across a broad area to compare with general population trends, the snow dataset specifications would be defined
to capture the year-to-year variation in more synoptic-scale winter snowfall, temperature, and wind regimes.

Definition of dataset specifications is also dependent upon the characteristics of the study region. It is rela-
tively simple to conceptualize the snow depth and persistence properties in the ruffed grouse example; however,
without snow science expertise, knowledge may be limited surrounding the physical snow processes, such as
wind-produced deposition and erosion that, in turn, control more complicated attributes, including the softness
and thermal resistance parameters. Determining the best spatial and temporal scales to represent these pro-
cesses and properties is equally complex. As an example, on south-facing slopes (in the Northern Hemisphere),
snow melting and refreezing can result in a hard surface crust, inhibiting burrowing by grouse (Devers
et al., 2007). Because crusting of the surface is an important component of the coupled biotic and abiotic system
for this project, wildlife and snow professionals likely need data at sufficient temporal resolution to resolve the
diurnal cycle (e.g., 1- to 3-h time increment), accounting for the role of afternoon sun exposure in characteriz-
ing softness. This snow surface change, in turn, may impact the other identified, relevant properties (depth, per-
sistence, and thermal resistance or insulating qualities). Representations of snow softness, either through
density metrics or more detailed consideration of micro-scale properties like grain type and bonding, would
require different levels of project resource investment and produce different returns in data quality and pro-
vided information. The desired snow variables, and the resources available to produce those data, should all be
accounted for when collaboratively making decisions about how best to represent the relevant snow informa-
tion across space and time for a given project.
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tools, or a combination of all three (i.e., data–model
fusion) is required to accomplish project goals.

Fundamentals of data–model fusion

Snow properties, and the processes that control their evolu-
tion, are ultimately based on the physical relationships
between weather and climate conditions and the land-
scapes over which they operate (Liston et al., 2007;
Liston & Hiemstra, 2011). Therefore, weather data, such as
gridded atmospheric (re)analyses or meteorological station
data, and knowledge of how weather controls physical
snow processes, can be combined to produce most required
snow datasets. The latest generation of numerical snow
modeling tools does this by spatially and temporally distrib-
uting and evolving weather information over various land
surfaces to simulate snow processes and properties. Fur-
ther, these modeling tools can also incorporate field and
remote sensing data to reproduce observations and create
improved snow products using a data–model fusion
approach. Previous studies (e.g., Boelman et al., 2019; Glass
et al., 2021; Pedersen et al., 2021) have argued that a data–
model fusion approach is increasingly necessary to produce
the high-quality, fit-for-purpose data products at appropri-
ate spatial and temporal resolutions required to answer the
wide range of wildlife–snow research and management
questions. Data–model fusion systems can produce more
accurate and sophisticated spatiotemporal snow distribu-
tions and evolutions than are possible with ground-based,

airborne, or satellite observational datasets, or models,
alone (Boelman et al., 2019; Daly, 2006; Hedrick et al.,
2015; Heilig et al., 2015; Stuefer et al., 2013).

Creating new, wildlife-relevant variables

In addition to filling spatial and temporal gaps in snow
observations, the inclusion of modeling tools allows wild-
life and snow professionals to build new variables that are
generally not measured in the field or remotely (e.g., from
space). These can include complex synthesis variables, like
strength, that combine numerous information sources to
create data products with increased information and
added value. While many of these wildlife-relevant vari-
ables can be measured, some are difficult to observe
because such synthesis characteristics frequently depend
on a large suite of snow properties. Additionally, it is chal-
lenging to measure these variables across broad spatial
areas, or at the specific times when animals experience
those snow conditions (e.g., during mid-winter episodic
snowmelt; Pedersen et al., 2015). The collaborative
development and application of project-specific, wildlife-
relevant snow variables are required to answer wildlife–
snow research and management questions most effectively
(Boelman et al., 2019) and will lead to a stronger under-
standing of the mechanistic links between animals and
snow properties (Glass et al., 2021; Loe et al., 2020; Peder-
sen et al., 2021). Step 3 is further illustrated in Box 3:
Ruffed grouse example.

BOX 3 Ruffed grouse example

Assume wildlife and snow professionals have determined that they require snow depth, persistence, soft-
ness, and thermal resistance information to evaluate the influence of snow on ruffed grouse survival. First,
it is worth determining if any publicly available, operational snow products are suitable to address the
project questions; input from snow professionals can help in this determination and the identification of
suitable datasets. For example, depth could be included using a ready-made modeling and data assimilation
product, like the 1-km, daily National Oceanic and Atmospheric Administration (NOAA)/National
Weather Service (NWS)/National Operational Hydrologic Remote Sensing Center (NOHRSC) Snow
Data Assimilation System (SNODAS) snow depth datasets (Barrett, 2003; Carroll et al., 2001). Similarly,
snow persistence information may be accessible with remote sensing datasets, like the 1-km, daily NOAA
Interactive Multisensor Snow and Ice System snow-cover product (Ramsay, 1998; USNIC, 2008), or the
500-m, daily National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging
Spectroradiometer (MODIS) snow-cover product (Hall et al., 2002). Wildlife and snow professionals can
work together to understand how these datasets are generated, their limitations, and their applicability for
understanding ruffed grouse fitness. If snow professionals determine that density is an acceptable proxy for
softness, they may recommend calculating it from the publicly available SNODAS depth and SWE informa-
tion. For reference, snow density, ρs (kg m�3), can be calculated from depth and SWE using the following
equation,

ρs ¼ ρw
SWE
HS

, ð1Þ
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Step 4: Implement quality control
procedures

Across scientific disciplines, quality assurance and qual-
ity control (QA/QC) of datasets are critical steps after
data collection or assembly and before using the data in
any further analyses (Campbell et al., 2013). Quality
assurance / quality control is important both for data col-
lected as part of a given project and for data acquired
from outside sources. Many standard procedures will be
familiar to any researcher experienced in data collection,
manipulation, or modeling. Snow-specific data checks
and subsequent automated data validation using graphi-
cal, range, and exceedance methods (Liston &
Elder, 2006b; Meek & Hatfield, 1994; Serreze et al., 1999)
are best facilitated by collaboration with members of that
discipline. Wildlife professionals can also provide impor-
tant validation controls based on their unique, local
knowledge of the study system, such as Traditional Eco-
logical Knowledge (Huntington, 2000) or an awareness of

additional, historical snow measurements that are not
publicly available. Step 4 is further illustrated in Box 4:
Ruffed grouse example.

Step 5: Incorporate snow information in
wildlife analyses

The final collaborative step is to incorporate snow infor-
mation into analyses of wildlife–snow relationships.
Depending on the unique wildlife–snow study, the way
in which this occurs varies greatly. However, certain
characteristics of snow datasets may complicate their
implementation within wildlife models. For instance,
spatial and temporal autocorrelation of snow properties
may require attention prior to using snow datasets within
ecological analyses. Failure to account for this potential
issue risks violating the assumptions of statistical tests
and may lead to erroneous conclusions about wildlife–
snow processes.

where ρw = 1000 kg m�3 is the water density, SWE (in meters) is the snow-water-equivalent depth, and HS
(in meters) is the snow depth.

If density is not a suitable proxy for softness in the ruffed grouse application, it may be necessary to
make field measurements of snow properties like stratigraphy, hardness, or collapse pressure, or even to
evaluate snow grain properties like type, size, and grain-to-grain bonding qualities. In addition, depending
on how the softness has been defined, it is likely that the associated stratigraphy, density, and grain proper-
ties can be used to define thermal resistance or insulating characteristics (Liston et al., 2002, Liston et al.
2020). These field observations could be used in conjunction with snow modeling tools to produce spatio-
temporal distributions and evolutions of these properties that likely have greater utility for this application. In
addition, the use of data–model fusion systems would facilitate the production of more relevant, value-added syn-
thesis variables, such as the number of days that snow conditions met depth and softness thresholds indicative of
ideal roosting habitat.

BOX 4 Ruffed grouse example

If snow density was deemed a suitable proxy for softness in the ruffed grouse project, experienced snow profes-
sionals could provide feedback on reasonable density ranges. This knowledge would be useful whether density
data were derived from publicly available snow data products (e.g., SNODAS), measured in the field across dif-
ferent snow types (e.g., new, faceted, and wind compacted), or collected using another method. For example,
new snow densities at low temperatures are unlikely to exceed 150 kg m�3 under any circumstances except the
presence of considerable wind, while the density of weak, dry, faceted snow is unlikely to exceed 250 kg m�3

(Dawson et al., 2017; Sturm et al., 2010). The review of density data by snow professionals in this application
would provide useful initial data validation. Moreover, the familiarity of the team wildlife professionals with
the example study system (e.g., their knowledge of additional snow field measurements in the area) would fur-
ther assist in quality control.
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Datasets collected across geographical space and
over time frequently contain some degree of spatial or
temporal dependence between subsequent samples
(Legendre & Legendre, 2012), and snow data are no
exception (Blöschl, 1999; Pomeroy & Gray, 1995). Auto-
correlation of predictor variables, when unaccounted for
in statistical models, introduces pseudoreplication to a
modeling framework and inflates the probability of incor-
rectly detecting statistical significance (Type I error;
Legendre & Legendre, 2012). However, the spatial and
temporal scales at which snow properties are correlated
(i.e., the correlation length) vary greatly depending on the
property in question, other snow properties, and a wide
range of climatological, meteorological, and geographical
factors (Hannula et al., 2016). Wildlife professionals using
a systematic sampling regime to incorporate snow
covariates may therefore inadvertently sample at locations
or times that are autocorrelated, if sample intervals coin-
cide with the scale of autocorrelation. The inclusion of
snow professionals when first developing field protocol
can help eliminate these issues by factoring the spatial and
temporal dependence of snow properties into sampling
design (Figure 2). Additionally, after data collection is
complete, it is often desirable to assess the degree of auto-
correlation in observations. This can be achieved using
methods (in the case of spatial autocorrelation) such as
Moran’s I mapping to evaluate correlation length
(Dormann et al., 2007; Fortin, 2020), and if spatial depen-
dence is detected, several statistical methods exist to
address the issue, such as eigenvector mapping (Dormann
et al., 2007). Comparable methods exist to diagnose and
address issues of temporal dependence. Snow professionals
can help minimize spatial and temporal dependence dur-
ing the data collection process and can subsequently pro-
vide insights on how best to assess and mitigate this
potential issue within the compiled datasets. Step 5 is fur-
ther illustrated in Box 5: Ruffed grouse example.

SNOW DATA FOR WILDLIFE
APPLICATIONS

Snow datasets have traditionally been developed for use
in physical science disciplines, such as hydrology, clima-
tology, meteorology, and water resource management
(Brown, 2000; Butt & Bilal, 2011; Dietz et al., 2012). Con-
sequently, snow data frequently have inadequate spatial
or temporal coverage and resolutions or irrelevant snow
property information for many wildlife research, manage-
ment, and monitoring applications (Boelman et al., 2019).
This data deficiency may result in wildlife professionals
using sub-optimal snow information, ignoring the snow
component of ecosystems, or, in extreme cases, ignoring
seasons of the year usually associated with snow (i.e., fall,
winter, and spring; as described in Boelman et al., 2019;
Loe et al., 2020). For example, one of the most common
snow dataset variables, SWE, is likely less relevant than
depth, for which it is sometimes substituted due to the fre-
quent correlation between these two properties.

Snow data commonly incorporated into ecological
applications are often ready-made, publicly available
products, such as remote sensing datasets, including
NASA/United States Geological Survey (USGS) Landsat
(Wulder et al., 2019) and NASA MODIS snow-covered
fraction (Hall et al., 2002), or point observations from
operational snow observing stations, such as SWE mea-
surements from Natural Resources Conservation Service
(NRCS) Snow Telemetry (SNOTEL; Serreze et al., 1999)
sites (Jackson et al., 2021; John et al., 2020; Middleton
et al., 2013). While these agency products have utility for
many wildlife applications, they are often used by
default, when more tailored, wildlife-relevant snow infor-
mation could provide a more nuanced understanding of
wildlife–snow relationships.

In general, three types of snow information exist:
(1) field observations, (2) remote sensing measurements,

BOX 5 Ruffed grouse example

To evaluate the potential effects of snow roosting habitat availability and quality on ruffed grouse survival,
snow depth field measurements may be necessary. It is important that from an early stage, the sampling
scheme consists of transects that extend beyond the correlation length of this variable. This likely involves ini-
tial sampling and testing to determine at what spatial and temporal scales snow properties such as depth are
non-independent within the study area. In addition, it would likely be important to implement a stratified sam-
pling scheme based on study area weather and landscape heterogeneity to measure this snow property within
different snowy landscape (snowscape) habitats or sub-domains, ensuring adequate characterization of the vari-
ability in snow properties across the study area. Once field data collection is complete, tests of spatial and tem-
poral dependence should be conducted. If autocorrelation of snow property data is likely to impact wildlife
analyses, this issue should be accounted for with appropriate statistical methods.
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and (3) data–model fusion products (Figure 3). In what fol-
lows, we summarize these three main data types, with an
emphasis on data–model fusion systems because of their
flexibility and utility for diverse wildlife applications.
While our examples of snow information focus on North
America, they represent similar information found in
other areas of the world. We compare four examples of
data–model fusion systems that generally represent
the range in complexity of such systems, and we detail
the strengths and weaknesses of each of these show-
cased methods. For each type of snow information, we
describe how wildlife and snow expertise can be inte-
grated to maximize the utility, quality, and benefit of
those types of data in collaborative wildlife–snow pro-
jects. We do this using an example GYE wildlife applica-
tion (Boxes 6–8: GYE example).

The GYE (Figure 4) represents an area of long-
standing ecological interest because of its biodiversity,
concentration of big game species and species of conser-
vation concern, history of wildlife research and manage-
ment, and inclusion of Yellowstone and Grand Teton
National Parks (Huff & Varley, 1999; Keiter, 1991). Snow

conditions in the GYE serve as an important driver of
wildlife movement behaviors (Bruggeman et al., 2009;
Rickbeil et al., 2019), survival (Ruth et al., 2011), and
reproduction (Inman et al., 2007). Snow-mediated elk
predation by wolves has been of particular interest to
researchers and managers (Brodie et al., 2014; Gese &
Grothe, 1995; Wilmers et al., 2020). Thus, there is a broad
requirement for flexible, diverse snow information capable
of representing the complex snow dynamics governing
these ecological processes.

Field measurements

Field measurement data typically represent snow processes
and associated properties at a single point in space and
time, or at regular time intervals (e.g., daily, weekly,
monthly, or annually; Figure 3). While generally considered
high quality and reliable, this information largely finds util-
ity in validating and bolstering other sources of spatially
and temporally distributed snow information. Used alone,
these datasets may be adequate for studies occurring at very

F I GURE 3 Two types of snow information (ground-based measurements and remote sensing observations) that can be used to answer

wildlife–snow interaction questions. Example ground-based measurements include point observations of snow properties made manually

across the landscape (i.e., snow depth transect and snow pit) and snow data measured using an automated Natural Resources Conservation

Service (NRCS) Snow Telemetry (SNOTEL) station. Example remote sensing observations include aerial lidar and satellite imagery. Graphic

courtesy of Flynn Melendy-Collier
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small spatial and temporal scales (e.g., studies of individual
lemming tunnels, such as Poirier et al., 2019 or reindeer
and caribou [Rangifer tarandus] cratering, such as Beumer
et al., 2017), or in a highly homogenous landscape (e.g., flat
mesa top or prairie), where few point observations are likely
representative of the snow conditions over a larger area
(Watson, Anderson, et al., 2006). However, point observa-
tions are inadequate for many wildlife applications because

they do not provide snow information for other, non-
measured areas or time periods. In addition, existing large-
scale snow field campaigns (e.g., NASA snow campaigns)
are designed to measure snow attributes like SWE and
albedo (i.e., surface reflectivity) to fulfill hydrologic and
climate-focused missions, and they are typically led by non-
wildlife groups (Brucker et al., 2017; Elder et al., 2009;
Yueh et al., 2009). While properties that may be important

F I GURE 4 Reference map for the Greater Yellowstone Ecosystem (GYE; black-bordered polygon) example wildlife–snow application.

This map showcases the topographic variation in the area (as indicated by the black-to-white, low-to-high elevation gradient), the location of

water features (light blue polygons), and the locations of the Grand Teton (green polygon) and Yellowstone (yellow polygon) National Parks.

This map also provides context for the Figure 5 snow depth simulations covering a subset of the GYE (dark blue-bordered polygon). Other

municipal features, including cities (red circles), interstate highways (red lines), and state boundaries (gray lines) are also included to

provide further geographical context.
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for wildlife, such as snow depth, are usually measured, the
most wildlife-relevant snow variables are often not
included in these publicly available, observational datasets.
Moreover, wildlife professionals may not have the snow
measurement expertise to implement their own snow field
programs; obstacles faced in doing so include uncertainty
regarding which snow properties to measure, the tools and
techniques that should be used to measure them (and how
to acquire such equipment), an appropriate sampling
scheme, and the amount of effort required to properly
characterize the relevant snow conditions in a given area
for a specific application. Snow professionals can help
design safe and effective field campaigns that do not over-
extend project resources, while still adequately reflecting
the snow processes and properties of interest. Such field
measurement expertise is exemplified in Kinar and
Pomeroy (2015), in which the techniques and equipment
for making in situ snow measurements are thoroughly
reviewed. The use of field measurements in collaborative
wildlife–snow science is further explored in Box 6: GYE
example.

Remote sensing products

Remote sensing snow datasets are created from
remotely captured imagery collected with ground-based,
airborne, or satellite platforms (Figure 3). Data acquisi-
tion can range from simple methods, such as camera
trap photographs of snow stakes or landscapes through-
out the winter season (Boelman et al., 2017; Sirén

et al., 2018), to piloted or unpiloted aerial Light Detec-
tion and Ranging (lidar) imagery (Fernandes
et al., 2018), and to satellite-based products (Dietz
et al., 2012; Pan et al., 2020). Remotely sensed data gen-
erally provide greater coverage in space and time than
on-the-ground observations, and they typically do not
require field visits to make measurements. However,
these products are often available only at relatively
coarse spatial scales and temporal resolutions
(e.g., 1-km spatial resolution or 8-day, repeat observa-
tion intervals; Rose et al., 2015); these limitations are
particularly true for the previous generation of satellites,
but meters-scale snow products are becoming increas-
ingly common. Unfortunately, finer resolution snow
products are generally produced from multi-spectral sat-
ellite sensors that are only able to map snow properties
such as presence/absence or snow-covered fraction
(Aalstad et al., 2020; Cannistra et al., 2021), which may
require post-processing or be unfeasible to translate into
more wildlife-relevant snow information (Boelman
et al., 2019; Bokhorst et al., 2016). Moreover, satellite
snow products are frequently riddled with artifacts from
complications, such as cloud or canopy cover, that inter-
fere with useful image acquisition and limit their utility
for estimating snowpack properties (Dietz et al., 2012;
Stillinger et al., 2019). Other remote sensing datasets,
such as snow depth derived from lidar aerial surveys,
often carry additional constraints, such as cost, the need
to fly pre- and post-snow accumulation, and limited spa-
tial and temporal coverage. Through communication
with wildlife professionals, snow professionals can aid

BOX 6 GYE example

Researchers in the GYE studying snow season elk predation by wolves would likely be interested in answering
two specific wildlife–snow questions: (1) What are the snow conditions at sites where wolves have killed elk
(hereafter referred to as kill sites)? and (2) How do snow conditions at these sites compare with the general
“character” of the study area’s snowscape?

Assume that wildlife and snow professionals collaboratively determine strength and depth to be the most
likely candidate snow properties to mediate wolf predation on elk. If relying on snow field measurements (either
alone or for incorporation into a data–model fusion system), the first of these wildlife–snow questions would
require wildlife and snow professionals to design time-efficient field protocols to evaluate snow conditions at kill
sites. Efforts would likely include measuring snow depth in the vicinity of the kill site, digging a simple snow pit
(Figures 2 and 3) to estimate the relative strength of snowpack layers using, for example, a hand-hardness test
(Greene et al., 2016), and making measurements of predator and prey tracks including track length, width, and
sinking depth (i.e., penetration depth from the snow surface; following Telfer & Kelsall, 1979). Both the snow pit
and animal track measurement efforts would provide information about the snow that may facilitate evaluation
of its potential role in the outcome of predator–prey interactions (Murray & Boutin, 1991; Nelson & Mech, 1986).
This assumes that the snow conditions at the time of measurement represent those during the predator–prey
encounter, which may or may not be valid. These protocols avoid excessive time investment in evaluating extra-
neous snow properties.
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in making collaborative decisions about how to access
or collect remote sensing snow data; which products
may be the most appropriate given the spatial, temporal,
and informational requirements of each unique wildlife
application; and how these datasets can be processed to
meet project-specific requirements. The use of remote
sensing products in collaborative wildlife–snow science
is further explored in Box 7: GYE example.

Data–model fusion systems

In addition to on-the-ground snow measurements and
remotely sensed snow products, modeling tools can be
used to estimate snow processes and properties at desired
resolutions where and when observational and operation-
ally produced snow information does not exist (Figure 5).
Such modeling tools can bypass the spatial and temporal

The second research question requires wildlife–snow teams to design a snowscape-scale sampling study. To
properly characterize snow conditions across the study area, wildlife and snow professionals could collaboratively
design a sampling scheme to assess relevant snow property distributions and capture important variation in distinct
snowscape habitats or sub-domains. These sub-domains might include heavily forested areas with steep slopes; rela-
tively flat, grass- and shrub-covered valleys with moderate wind speeds; and windy, high-mountain, short vegeta-
tion, alpine areas (Watson, Anderson, et al., 2006). Sampling sites should be randomly selected within each of these
snowscape habitats, implementing a stratified random sampling scheme, with sampling locations constrained by
requirements of safety and access. To capture peak snow-accumulation season conditions before snowmelt
occurs (Sexstone et al., 2021), while also preventing any impingement on kill site assessments during the
height of the fall and winter field season, snow measurements in the GYE could be made later in the winter.
Snow conditions during other times of the winter season could also be evaluated using remote sensing data
or data–model fusion simulations that incorporate these peak snow-accumulation season measurements. Sam-
pling protocols to address this snowscape-scale research question, and to accurately characterize the study area’s
general snow properties, could include digging more detailed snow pits than previously described for addressing the
first wildlife–snow question. These could serve to evaluate snow stratigraphy, hand-hardness of each layer, and den-
sity. Snow depths could be measured along several transects at each snowscape sampling site because depth can be
one of the most spatially variable snow properties (Elder et al., 1991; Pomeroy & Gray, 1995; Sturm et al., 2010). This
example field protocol design represents a collaborative effort meant to adequately address both of the aforemen-
tioned, multi-scale predator–prey-snow questions, while also accounting for study priorities, time and other resource
limitations, and personnel safety.

BOX 7 GYE example

Remotely sensed snow data may enable researchers to better balance the goal of assessing general, study
area snowscape conditions (the second example GYE research question) with ensuring personnel safety
and logistical efficiency. To this end, the research team may wish to identify other snow data collection
methods that would allow remote monitoring for a longer time, such as a network of trail cameras and
snow stakes to assess changes in depth throughout the fall, winter, and spring (Cosgrove et al., 2021;
Sirén et al., 2018). This solution could eliminate human travel in avalanche-prone areas and allow for
additional data collection. Snow professionals could provide guidance on where to place camera and
snow stake monitors to be most representative of the general snowscape evolution and to best comple-
ment a safe, end-of-season intensive snow measurement campaign (Elder et al., 1991, 1998; Kattelmann
et al., 1988). In addition, snow professionals may have data processing algorithms and scripts that could
assist with the subsequent image processing (Currier, 2016; Currier et al., 2017) and potentially the later
incorporation of the data into a data–model fusion system (Liston et al., 2020; Liston & Hiemstra, 2008).
There may also be operational, satellite-derived remote sensing products that could be useful in assessing
snowscape characteristics, such as active microwave products that could be used to identify the timing of
surface melt, rain-on-snow, and refreeze events that potentially contribute to ice layers within the snow-
pack (Bartsch et al., 2010).
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limitations of field measurements and remote sensing data
but can suffer from simplistic, incomplete, or unrealistic
representation of the physics controlling snow processes

and properties across the landscape. Watson, Newman,
et al. (2006) and Liston et al. (2007) provide summaries of
many snow models and snow modeling approaches,

F I GURE 5 Snow depth distributions produced using the four data–model fusion systems we describe: (a) inverse distance weighted

interpolation, (b) Snow Data Assimilation System (SNODAS) products, (c) Yellowstone Snow Model, and (d) SnowModel. Snow depth is

shown for a 65-km � 82-km area within the Greater Yellowstone Ecosystem over Jackson, Wyoming, USA on 1 March 2019. Natural

Resources Conservation Service (NRCS) Snow Telemetry (SNOTEL; filled squares) and NRCS snow course (filled circles) snow-water

equivalent measurements (n = 18) were utilized in conjunction with the average NRCS snow density value on this date for this area

(277 kg m�3) to generate snow depth distributions using each system. Panels (a), (c), and (d) represent snow depth at a 30-m spatial

resolution, while panel (b) is on a 1-km grid (i.e., the spatial resolution of the SNODAS snow depth product). Land cover classified as water

is represented on each plot by dark gray polygons. Further geographical context for this simulation domain is provided in Figure 4.
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though these reviews are non-exhaustive. As advocated in
Boelman et al. (2019), we assert that the best path forward
is to integrate field or remote sensing datasets with model-
ing tools in a data–model fusion approach to maximize
the benefit of each individual input and produce more
informative, realistic, and tailored snow products.

We describe four examples of modeling tools with
data–model fusion capabilities. Each of these tools has
been applied in wildlife applications, and they are gener-
ally representative of the available range of complexity in
such assimilation systems. These four data–model fusion
systems vary in how difficult they are to implement, and
in the quality and utility of their data products; they can
all be used to estimate and distribute snow properties of
interest over space and through time. First, we present a
simple inverse distance weighted spatial interpolation
(Bartier & Keller, 1996; Erxleben et al., 2002;
Shepard, 1968). Second, we detail a publicly available
data assimilation product, SNODAS (Barrett, 2003;
Carroll et al., 2001). Third, we summarize the Yellow-
stone Snow Model (YSM) that has been broadly applied
for wildlife applications within the GYE (Figure 4;
Wockner et al., 2002). Fourth, we describe SnowModel, a
system that incorporates high-resolution meteorological,
surface energy budget, blowing snow, and snowpack evo-
lution sub-models to provide estimates and predictions of
spatially and temporally distributed snow information
(Liston et al., 2020; Liston & Elder, 2006a).

We apply each of these four example data–model
fusion systems to a GYE domain covering Grand Teton
National Park and the surrounding area (Figures 4 and
5). This domain was chosen to highlight how available
snow observations of SWE and density (obtained from
NRCS SNOTEL and snow course sites) can be assimilated
within a data–model fusion framework to provide more
wildlife-relevant snow information. In this example, we
display snow depth calculated from these SWE and den-
sity properties, facilitating a visual comparison of the
snow depth distribution produced using each of these
four simulation systems. The use of data–model fusion
systems in collaborative wildlife–snow science is further
explored in Box 8: GYE example.

Inverse distance weighted interpolation

A simple way to produce snow property distribution
maps is to spatially interpolate field observations
(Figure 5a) of depth, SWE, or other snow variables of
interest (Gilbert et al., 2017; Shipley et al., 2020). A
widely used interpolation scheme is the inverse distance
weighting (IDW) method (Bartier & Keller, 1996;
Erxleben et al., 2002; Shepard, 1968). Inverse distance
weighting assumes that spatial autocorrelation exists, and
variables close to each other are more similar than those
farther apart. To predict variable values at an
unmeasured location, IDW uses the measured values sur-
rounding that prediction location, and the closest mea-
surements have a greater influence on the predicted
values than more distant measurements. The weighting
function that defines the relative influence of each mea-
sured value in the predicted values at unmeasured loca-
tions is inversely related to the distances between the
measurement location and the unmeasured location.

The general IDW formula for a two-dimensional
domain in the x–y plane is:

vx,y ¼
Xn

i¼1

vid
�p
x,y,i

�Xn

i¼1

d�p
x,y,i, ð2Þ

where vx,y is the estimated variable at position x, y; vi is
the ith known variable; n is the number of known vari-
ables; dx,y,i is the distance between vx,y and vi; and p is a
power exponent defined by the user. The term d�p defines
the inverse distance weights in the IDW method, and the
exponent p controls the rate at which the weights decrease
with increasing distance from the observation points. A
low p value indicates that more observations contribute to
the predicted value, regardless of their distance, and pro-
duces a relatively smooth modeled surface. A high p value
indicates that only nearby observations influence the
predicted value at the unmeasured location, and thus, pro-
duces a more spatially variable modeled surface.

To create the snow depth distributions depicted in
Figure 5a, SNOTEL snow densities, ρs (in kilograms per

BOX 8 GYE example

In this GYE predator–prey-snow application, it would be possible to achieve a deeper understanding of the
role of snow in wolf–elk predation events if field measurements and remotely sensed depth data could be
combined with modeling tools. Data–model fusion methods, such as those detailed in the following sub-sec-
tions, would allow the generation of spatially and temporally explicit snow information, maximizing the util-
ity of field and camera trap datasets (Boxes 6 and 7: GYE example) and supplying higher quality, more
detailed information for use in subsequent space- and time-varying analyses (Figure 5).
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cubic meter), were used to convert SWE values to HS
(in meters) using the following form of Equation (3):

HS¼ ρw
ρs

SWE: ð3Þ

Strengths and weaknesses
The IDW method is simple to understand and imple-
ment. It also requires minimal investment of time and
computing power, and it can be applied to a variety of
snow observation variables. However, regardless of the
p value used, the IDW method often produces unrealistic,
concentric circles around each observed value. In addi-
tion, this method can create excessively smooth, over-
simplified surfaces that fail to accurately represent spatial
heterogeneity occurring at scales smaller than the sam-
pling resolution (Figure 5a). This may be particularly
problematic in highly heterogenous snow environments.

Snow Data Assimilation System

Other commonly used sources for spatially distributed
snow information for wildlife applications are NOAA/
NWS/NOHRSC SNODAS products (Barrett, 2003; Carroll
et al., 2001). The SNODAS products integrate data from
satellite and airborne platforms, ground stations, and
model-produced snow variables. The NOHRSC satellite
remote sensing program uses NOAA Geostationary Opera-
tional Environmental Satellite (GOES) and Advanced Very
High-Resolution Radiometer (AVHRR) imagery to pro-
duce daily maps of snow- and cloud-cover areal extent
over the conterminous United States. In addition, the pro-
gram utilizes data from the Airborne Gamma Radiation
Snow Survey Program, which collects near real-time SWE
measurements over a network of 1900 aircraft flight lines
covering portions of 29 states (Carroll et al., 2001). These
flights measure the amount of gamma radiation attenu-
ated by the snow cover by comparing the results to data
collected from the same flight lines under snow-free condi-
tions and then convert those values to SWE. Ground-based
depth and SWE data from NRCS SNOTEL sites and other
observing networks are also used by SNODAS. Each day,
NOHRSC obtains data from approximately 5000 NWS
cooperative observers, 1100 automated SWE sensors, 1600
snow courses (i.e., snow measurement sites and transects),
and 800 snow spotters (i.e., NWS citizen-science observers)
across the United States and Canada (Carroll et al., 2001).
Snow Data Assimilation System combines these satellite,
airborne, and ground-based datasets and merges them
with their weather analyses and modeled snow datasets to
produce SWE and snow depth maps that are made pub-
licly available. This operational system is run over the

conterminous United States using a 1-h time step, and
snow variable outputs are provided at 1-km spatial resolu-
tion and daily temporal resolution (Figure 5b).

Strengths and weaknesses
The SNODAS data products provide several wildlife-relevant
snow variables (e.g., depth and density) over a relatively long
period of record that will likely continue well into the future.
Moreover, the snow information is generally high quality,
and the daily temporal scale is adequate for many wildlife
applications. Despite these advantages, the 1-km spatial scale
of the data limits their applicability for many wildlife
research and management projects (Brennan et al., 2013),
and the provided snow information often still does not con-
tain the most wildlife-relevant variables (e.g., snow structure
and strength; Boelman et al., 2019).

Yellowstone Snow Model

The latest version of the Natural Resources and Ecology
Laboratory (NREL) Yellowstone Snow Model (YSM) is
described in detail by Wockner et al. (2002). This spatially
distributed snowpack model has been used extensively
over the GYE area (Figure 4) for wildlife–snow studies
(Barnowe-Meyer et al., 2010; Kauffman et al., 2007; Mao
et al., 2005; Uboni et al., 2015). Yellowstone Snow Model
simulates SWE distributions using SWE data from NRCS
SNOTEL sites and other meteorological stations in the
simulation domain (such as National Park Service-owned
and operated stations). Yellowstone Snow Model creates
SWE maps by initially distributing SWE observations
across the GYE using IDW interpolation. The station
observations and station elevations are then used to calcu-
late SWE changes with elevation (i.e., SWE lapse rates).
Next, a background topographic map is used to adjust the
interpolated SWE distribution for elevations between SWE
observations (Coughenour, 1992). This elevation-adjusted
SWE distribution is then further modified for the effects of
slope, aspect, and land cover type following Farnes
et al. (1999). Farnes et al. (1999) used field observations
from the GYE to quantify how topographic slope and
aspect and forest canopy structure affected SWE on the
ground. The empirical adjustment factors from this work
are used in YSM to account for processes that are not
explicitly represented in the model, like forest canopy
interception of snowfall or enhanced solar radiation on
south-facing slopes. To create a SWE distribution, YSM
requires the following inputs covering the spatial domain,
at the desired spatial resolution, and over the time period
of interest: (1) digital elevation (topographic) data from
which slope and aspect are calculated, (2) land cover data
to define the forest canopy distribution, and (3) SWE
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observation data (SWE value with collection date and
location).

Strengths and weaknesses
Compared to many other simple data–model fusion systems
like IDW interpolation, YSM represents a more sophisti-
cated option because it incorporates empirical, physical pro-
cess representations that produce more realistic simulations
of SWE conditions (Figure 5c). The empirical SWE adjust-
ments are parameterized using the results of local, and cur-
rent climate regime, field studies. It is also flexible in terms
of spatial and temporal resolutions, and domains. There-
fore, this model is quite suitable for wildlife applications
within the GYE and potentially other ecologically similar
areas, assuming the climate presented in the simulation of
interest is similar to that when the empirical parameteriza-
tions were developed (i.e., 1999), and the vegetation-related
adjustments (therefore the vegetation itself) are transferable
to the new simulation domain. This system also accounts
for locally unique processes in the GYE, such as snow con-
ditions at geothermal hotspots, which are ignored in most
other data–model fusion systems.

Although there are many advantages to using YSM for
wildlife–snow applications, there are also inherent short-
comings. First, the most recent YSM code is only available
by contacting the system authors. While this presents an
additional challenge to wildlife professionals interested in
using this data–model fusion system, it also ensures that
system authors are aware of studies employing their model
and provides an important opportunity for collaboration.
Second, this system only provides SWE information,
which is mostly useful as a rough proxy for other, more
wildlife-relevant snow properties, such as winter severity.
However, more valuable snow information, like snow
depth, can be calculated using the YSM SWE distribution
in concert with spatially distributed snow density informa-
tion (Figure 5c). A third YSM restriction is that SWE distri-
butions can only be generated by using spatially and
temporally distributed observational SWE data, which is
not always available or possible to collect. Lastly, because
the effects of slope, aspect, and forest canopy structure
incorporated into the model are based on the Farnes
et al. (1999) GYE field observations, additional work is
required to apply this system to other areas or times.

SnowModel

SnowModel is a spatially distributed, physically based snow
evolution data–model fusion system designed for application
in all landscapes, climates, and conditions where snow
occurs (Liston et al., 2020; Liston & Elder, 2006a). It is an
aggregation of three sub-models that each resolve different

environmental processes related to snow: EnBal (Liston,
1995; Liston et al., 1999) calculates surface energy
exchanges and snowmelt; SnowPack-ML (Liston &
Hall, 1995; Liston & Mernild, 2012) is a multi-layer snow-
pack model that simulates depth, density, SWE, and the
evolution of other snow properties; and SnowTran-3D
(Liston et al., 2007; Liston & Sturm, 1998) accounts for
blowing snow. SnowModel is designed to run on grid
increments of 1 m to 25 km and on temporal increments
of 1 h to 1 day. Simulated processes include the time evo-
lution of rain and snow precipitation, snow redistribution
and erosion by wind, interception of snow by vegetative
cover, and snowmelt.

Coupled to SnowModel is a meteorological distribution
model called MicroMet (Liston & Elder, 2006b). MicroMet
provides the high-resolution, gridded atmospheric informa-
tion required by SnowModel. To do this, MicroMet is driven
by publicly available or field-experiment-specific weather
stations or gridded atmospheric datasets (typically from
reanalyses). Also coupled to SnowModel is SnowAssim
(Liston & Hiemstra, 2008). SnowAssim is designed to assim-
ilate ground-based and remotely sensed snow observations
within SnowModel. MicroMet and SnowAssim are integral
components of SnowModel’s data–model fusion system;
MicroMet adds value to meteorological data by spatial
downscaling and temporal interpolation, and SnowAssim
incorporates snow-related observations.

To create snow property distributions, SnowModel
requires the following inputs covering the spatial
domain, at the desired spatial resolution, and over the
time period of interest: (1) digital elevation (topographic)
data, (2) land cover classification data, and (3) meteoro-
logical data (specifically air temperature, precipitation,
relative humidity, wind speed, and wind direction). If the
SnowAssim sub-model is also run, then any available
snow property observations (e.g., SWE, depth, density,
snow-onset date, or snow-free date) can be used to fur-
ther refine the SnowModel outputs (Figure 5d).

Strengths and weaknesses
The SnowModel data–model fusion system has many
benefits when compared with other data–model fusion
systems. SnowModel simulations using SnowAssim dis-
play considerably more realistic spatial heterogeneity and
temporal evolution than those provided by models or
observations alone (Boelman et al., 2019; Liston
et al., 2007; Liston et al., 2008; Pedersen et al., 2015;
Pedersen et al., 2018; Pedersen et al., 2021; Stuefer
et al., 2013). The synthesis, or fusion, of both modeled
and observed datasets allows production of spatially and
temporally continuous data distributions that match the
observations where and when they occur. In addition,
implicit in this data–model fusion approach is that the
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resulting snow property distributions are also realistic
during time periods before and after the observations,
and at locations between the observations. An addi-
tional benefit is that MicroMet, SnowModel, and Snow-
Assim have been designed to be flexible in terms of
spatial and temporal domains, spatial and temporal res-
olutions, and snow property variables of interest. There-
fore, they can be applied worldwide for any time and
place and can produce tailored, project-specific data
products. SnowModel also allows for the creation of
targeted, value-added, synthesis variables relevant to
specific wildlife–snow applications.

While there are advantages to SnowModel’s flexibility,
its complexity also carries disadvantages. As is the case with
the YSM data–model fusion system, SnowModel code is
only available by contacting the system author. Again, this
adds additional steps to the process of employing this sys-
tem in wildlife–snow studies, but communication with
the system author is also likely to result in simulations
that better address the wildlife research and management
objectives. Moreover, SnowModel requires a far greater
investment of time to understand and operate its data–
model fusion programs. Lastly, computational require-
ments, both in terms of memory and data storage, are
considerably greater than other snow-related data–model
fusion systems. SnowModel simulations can produce large
amounts of data, and novel approaches andmethods to pro-
cess and analyze such datasets are often required. Success-
ful SnowModel applications have typically included direct
collaborations with experienced SnowModel users and
developers, particularly when a project requires the crea-
tion of new, synthesis variables for a specific application.

A VISION FOR FUTURE WILDLIFE–
SNOW SCIENCE

Answering today’s most pressing wildlife–snow questions is
challenging due to the difficulty of finding and applying
appropriate snow information, and this obstacle has histori-
cally impeded a nuanced understanding of species and eco-
systems influenced by snow. We argue that advancing our
study of wildlife–snow interactions requires meaningful
collaboration between wildlife and snow professionals.
Through such collaborations, wildlife-relevant snow data,
represented at appropriate spatial and temporal scales, can
be collected, produced, and applied to conduct effective,
high-quality research. Snowscape conditions continue to
change worldwide, often becoming less predictable and
more extreme, and it is, therefore, increasingly necessary
for wildlife professionals to study wildlife–snow interac-
tions and monitor change in those relationships through
time (Berger et al., 2018; Berteaux et al., 2017; Boelman

et al., 2019; Callaghan et al., 2011; Pedersen et al., 2020). To
ensure success in this endeavor, and to genuinely integrate
these two sciences, wildlife and snow professionals must
partner in the development and execution of wildlife–snow
projects. Finally, professionals from both fields must work
together to communicate and disseminate research results
accurately and clearly, given the terminology differences
that exist between these two disciplines.

Here, we have provided a five-step procedure to facili-
tate this collaborative process with the goal of improving
understanding of wildlife–snow relationships across
research, management, and long-term monitoring appli-
cations. Additionally, we have described some key
data sources that can be used when following this inter-
disciplinary approach, placing particular emphasis on
data–model fusion systems. These systems offer greater
flexibility and scope than snow data observations that are
limited in space and time; spatially distributed, tempo-
rally evolving datasets are required to evaluate most
wildlife–snow interactions. Data–model fusion systems
greatly expand the data resources available to research
and management teams, and thus, the reliance on less
biologically meaningful snow information at inappropri-
ate spatial and temporal resolutions is no longer neces-
sary. Our intention is for this publication to guide
wildlife and snow professionals seeking answers to com-
plex wildlife–snow questions and to foster more integra-
tive projects incorporating tailored, wildlife-relevant
snow information.

ACKNOWLEDGMENTS
This work was funded under NASA grant 80NSSC19M0109
and National Science Foundation grant 1839195. We
gratefully acknowledge Dylan Elder for his time and
valuable insights on collaborative wildlife–snow field
science. We appreciate the commitment of Cameron
Carroll and Dr. Mark Hurley to cross-disciplinary
collaboration in the pursuit of wildlife–snow research;
their interdisciplinary perspectives and professional
expertise helped motivate and shape this manuscript.
Additionally, we are thankful for the graphic design
services of Flynn Melendy-Collier and his assistance
in communicating our vision through his artwork.
We also acknowledge two anonymous reviewers
who helped focus and strengthen the manuscript
message.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ORCID
Adele K. Reinking https://orcid.org/0000-0002-9082-
4315

ECOSPHERE 19 of 25

 21508925, 2022, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4094 by U

niversity O
f A

laska Fairbanks, W
iley O

nline L
ibrary on [24/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-9082-4315
https://orcid.org/0000-0002-9082-4315
https://orcid.org/0000-0002-9082-4315


Stine Højlund Pedersen https://orcid.org/0000-0003-
0078-8873
Thomas W. Glass https://orcid.org/0000-0001-7494-
4918
Brendan A. Oates https://orcid.org/0000-0003-2815-
9518
Niels M. Schmidt https://orcid.org/0000-0002-4166-
6218

REFERENCES
Aalstad, K., S. Westermann, and L. Bertino. 2020. “Evaluating Satel-

lite Retrieved Fractional Snow-Covered Area at a High-Arctic
Site Using Terrestrial Photography.” Remote Sensing of Envi-
ronment 239: 111618.

Apollonio, M., F. Brivio, I. Rossi, B. Bassano, and S. Grignolio.
2013. “Consequences of Snowy Winters on Male Mating Strat-
egies and Reproduction in a Mountain Ungulate.” Behavioural
Processes 98: 44–50.

Balkenhol, N., M. K. Schwartz, R. M. Inman, J. P. Copeland, J. S.
Squires, N. J. Anderson, and L. P. Waits. 2020. “Landscape
Genetics of Wolverines (Gulo gulo): Scale-Dependent Effects of
Bioclimatic, Topographic, and Anthropogenic Variables.” Jour-
nal of Mammalogy 101: 790–803.

Barnowe-Meyer, K. K., P. J. White, and J. A. Byers. 2011. “Maternal
Investment by Yellowstone Pronghorn Following Winter Habitat
Deterioration.”Western North American Naturalist 71: 222–33.

Barnowe-Meyer, K. K., P. J. White, T. L. Davis, D. W. Smith, R. L.
Crabtree, and J. A. Byers. 2010. “Influences of Wolves and
High-Elevation Dispersion on Reproductive Success of Prong-
horn (Antilocapra americana).” Journal of Mammalogy 91:
712–21.

Barrett, A. 2003. National Operational Hydrologic Remote Sensing
Center SNOw Data Assimilation System (SNODAS) Products at
NSIDC. NSIDC Special Report 11. Boulder, CO: National Snow
and Ice Data Center.

Bartier, P. M., and C. P. Keller. 1996. “Multivariate Interpolation to
Incorporate Thematic Surface Data Using Inverse Distance
Weighting (IDW).” Computers and Geosciences 22: 795–9.

Bartsch, A., T. Kumpula, B. C. Forbes, and F. Stammler. 2010.
“Detection of Snow Surface Thawing and Refreezing in the
Eurasian Arctic with QuikSCAT: Implications for Reindeer
Herding.” Ecological Applications 20: 2346–58.

Bélisle, A. C., H. Asselin, P. LeBlanc, and S. Gauthier. 2018. “Local
Knowledge in Ecological Modeling.” Ecology and Society
23: 14.

Berger, J., C. Hartway, A. Gruzdev, and M. Johnson. 2018. “Climate
Degradation and Extreme Icing Events Constrain Life in Cold-
Adapted Mammals.” Scientific Reports 8: 1156.

Berman, E. E., N. C. Coops, S. P. Kearney, and G. B. Stenhouse.
2019. “Grizzly Bear Response to Fine Spatial and Temporal
Scale Spring Snow Cover in Western Alberta.” PLoS One 14:
e0215243.

Berteaux, D., G. Gauthier, F. Domine, R. A. Ims, S. F. Lamoureux,
E. Lévesque, and N. Yoccoz. 2017. “Effects of Changing
Permafrost and Snow Conditions on Tundra Wildlife: Critical
Places and Times.” Arctic Science 3: 65–90.

Beumer, L. T., Ø. Varpe, and B. B. Hansen. 2017. “Cratering Behav-
iour and Faecal C:N Ratio in Relation to Seasonal Snowpack

Characteristics in a High-Arctic Ungulate.” Polar Research 36:
1286121.

Bilodeau, F., G. Gauthier, and D. Berteaux. 2013. “The Effect of
Snow Cover on Lemming Population Cycles in the Canadian
High Arctic.” Oecologia 172: 1007–16.

Blöschl, G. 1999. “Scaling Issues in Snow Hydrology.” Hydrological
Processes 13: 2149–75.

Boelman, N. T., J. D. Holbrook, H. E. Greaves, J. S. Krause, H. E.
Chmura, T. S. Magney, J. H. Perez, et al. 2016. “Airborne Laser
Scanning and Spectral Remote Sensing Give a Bird’s Eye Per-
spective on Arctic Tundra Breeding Habitat at Multiple Spatial
Scales.” Remote Sensing of Environment 184: 337–49.

Boelman, N. T., J. S. Krause, S. K. Sweet, H. E. Chmura, J. H. Perez,
L. Gough, and J. C. Wingfield. 2017. “Extreme Spring Condi-
tions in the Arctic Delay Spring Phenology of Long-Distance
Migratory Songbirds.” Oecologia 185: 69–80.

Boelman, N. T., G. E. Liston, E. Gurarie, A. J. H. Meddens, P. J.
Mahoney, P. B. Kirchner, G. Bohrer, et al. 2019. “Integrating
Snow Science and Wildlife Ecology in Arctic-Boreal North
America.” Environmental Research Letters 14: 010401.

Bokhorst, S., S. H. Pedersen, L. Brucker, O. Anisimov, J. W. Bjerke,
R. D. Brown, D. Ehrich, et al. 2016. “Changing Arctic Snow
Cover: A Review of Recent Developments and Assessment of
Future Needs for Observations, Modelling, and Impacts.”
Ambio 45: 516–37.

Brennan, A., P. C. Cross, M. Higgs, J. P. Beckmann, R. W. Klaver,
B. M. Scurlock, and S. Creel. 2013. “Inferential Consequences of
Modeling Rather thanMeasuring SnowAccumulation in Studies
of Animal Ecology.” Ecological Applications 23: 643–53.

Brodie, J. F., E. Post, J. Berger, and F. Watson. 2014. “Trophic Inter-
actions and Dynamic Herbivore Responses to Snowpack.” Cli-
mate Change Responses 1: 4.

Brown, R. D. 2000. “Northern Hemisphere Snow Cover Variability
and Change, 1915–97.” Journal of Climate 13: 2339–55.

Broxton, P. D., A. A. Harpold, J. A. Biederman, P. A. Troch, N. P.
Molotch, and P. D. Brooks. 2014. “Quantifying the Effects of
Vegetation Structure on Snow Accumulation and Ablation in
Mixed-Conifer Forests.” Ecohydrology 8: 1073–94.

Brucker, L., C. Hiemstra, H.-P. Marshall, K. Elder, R. De Roo, M.
Mousavi, F. Bliven, et al. 2017. “A First Overview of SnowEx
Ground-Based Remote Sensing Activities during the Winter
2016–2017.” In IEEE International Geoscience & Remote Sensing
Society Symposium, 1391–94. Fort Worth, TX, USA. July 23–28.

Bruggeman, J. E., R. A. Garrott, P. J. White, F. G. R. Watson, and
R. W. Wallen. 2009. “Chapter 28: Effects of Snow and Landscape
Attributes on Bison Winter Travel Patterns and Habitat Use.” In
The Ecology of Large Mammals in Central Yellowstone – Sixteen
Years of Integrated Field Studies, edited by R. A. Garrott, P. J.
White, and F. G. R. Watson, 623–47. San Diego, CA: Elsevier Aca-
demic Press.

Butt, M. J., and M. Bilal. 2011. “Application of Snowmelt Runoff
Model for Water Resource Management.” Hydrological Pro-
cesses 25: 3735–47.

Callaghan, T. V., M. Johansson, R. D. Brown, P. Y. Groisman, N.
Labba, V. Radionov, R. G. Barry, et al. 2011. “The Changing
Face of Arctic Snow Cover: A Synthesis of Observed and Pro-
jected Changes.” Ambio 40: 17–31.

Campbell, J. L., L. E. Rustad, J. H. Porter, J. R. Taylor, E. W.
Dereszynski, J. B. Shanley, C. Gries, et al. 2013. “Quantity Is

20 of 25 REINKING ET AL.

 21508925, 2022, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4094 by U

niversity O
f A

laska Fairbanks, W
iley O

nline L
ibrary on [24/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-0078-8873
https://orcid.org/0000-0003-0078-8873
https://orcid.org/0000-0003-0078-8873
https://orcid.org/0000-0001-7494-4918
https://orcid.org/0000-0001-7494-4918
https://orcid.org/0000-0001-7494-4918
https://orcid.org/0000-0003-2815-9518
https://orcid.org/0000-0003-2815-9518
https://orcid.org/0000-0003-2815-9518
https://orcid.org/0000-0002-4166-6218
https://orcid.org/0000-0002-4166-6218
https://orcid.org/0000-0002-4166-6218


Nothing without Quality: Automated QA/QC for Streaming
Environmental Sensor Data.” Bioscience 63: 574–85.

Campbell, L. M. 2005. “Overcoming Obstacles to Interdisciplinary
Research.” Conservation Biology 19: 574–7.

Cannistra, A. F., D. E. Shean, and N. C. Cristea. 2021. “High-Resolution
CubeSat Imagery and Machine Learning for Detailed Snow-
Covered Area.”Remote Sensing of Environment 258: 112399.

Carroll, T., D. Cline, G. Fall, A. Nilsson, L. Li, and A. Rost. 2001.
“NOHRSC Operations and the Simulation of Snow Cover
Properties for the Conterminous U.S.” In Proceedings of the
69th Annual Meeting of the Western Snow Conference, 1–14.
Sun Valley, Idaho, USA, April 17–19.

Chimienti, M., J.-P. Desforges, L. T. Beumer, J. Nabe-Nielsen, F. M.
van Beest, and N. M. Schmidt. 2020. “Energetics as Common
Currency for Integrating High Resolution Activity Patterns
into Dynamic Energy Budget-Individual Based Models.” Eco-
logical Modelling 434: 109250.

Coady, J. W. 1974. “Influence of Snow on Behavior of Moose.”
Canadian Naturalist 101: 417–36.

Cosgrove, C. L., J. Wells, A. W. Nolin, J. Putera, and L. R. Prugh.
2021. “Seasonal Influence of Snow Conditions on Dall’s Sheep
Productivity in Wrangell-St Elias National Park and Preserve.”
PLoS One 16: e0244787.

Coughenour, M. B. 1992. “Spatial Modeling and Landscape Charac-
terization of an African Pastoral Ecosystem: A Prototype
Model and Its Potential Use for Monitoring Drought.” In Eco-
logical Indicators, Vol I, edited by D. H. McKenzie, D. E. Hyatt,
and V. J. McDonald, 787–810. New York, NY: Elsevier Applied
Science.

Crupi, A. P., D. P. Gregovich, and K. S. White. 2020. “Steep and
Deep: Terrain and Climate Factors Explain Brown Bear (Ursus
arctos) Alpine Den Site Selection to Guide Heli-Skiing Man-
agement.” PLoS One 15: e0238711.

Currier, W. R. 2016. “An Independent Evaluation of Frozen Precipi-
tation from the WRF Model and PRISM in the Olympic Moun-
tains for WY 2015 and 2016.” Thesis. University of
Washington.

Currier, W. R., T. Thorson, and J. D. Lundquist. 2017. “Independent
Evaluation of Frozen Precipitation from WRF and PRISM in
the Olympic Mountains.” Journal of Hydrometeorology 18:
2681–703.

Cuyler, C., C. J. Daniel, M. Enghoff, N. Levermann, N. Møller-Lund,
P. N. Hansen, D. Damhus, and F. Danielsen. 2020. “Using Local
Ecological Knowledge as Evidence to Guide Management: A
Community-Led Harvest Calculator for Muskoxen in Green-
land.” Conservation Science and Practice 2: e159.

Daly, C. 2006. “Guidelines for Assessing the Suitability of Spatial
Climate Data Sets.” International Journal of Climatology 26:
707–21.

Dawson, N., P. Broxton, and X. Zeng. 2017. “A New Snow Density
Parameterization for Land Data Initialization.” Journal of
Hydrometeorology 18: 197–207.

Desforges, J. P., G. M. Marques, L. T. Beumer, M. Chimienti, L. H.
Hansen, S. H. Pedersen, N. M. Schmidt, and F. M. van Beest.
2021. “Environment and Physiology Shape Arctic Ungulate
Population Dynamics.” Global Change Biology 27: 1755–71.

Devers, P. K., D. F. Stauffer, G. W. Norman, D. E. Steffen, D. M.
Whitaker, J. D. Sole, T. J. Allen, et al. 2007. “Ruffed Grouse

Population Ecology in the Appalachian Region.” Wildlife
Monographs 168: 1–36.

Dietz, A. J., C. Kuenzer, U. Gessner, and S. Dech. 2012. “Remote
Sensing of Snow – A Review of Available Methods.” Interna-
tional Journal of Remote Sensing 33: 4094–134.

Dormann, C. F., J. M. McPherson, M. B. Araújo, R. Bivand, J.
Bolliger, G. Carl, R. G. Davies, et al. 2007. “Methods to
Account for Spatial Autocorrelation in the Analysis of Species
Distributional Data: A Review.” Ecography 30: 609–28.

Droghini, A., and S. Boutin. 2018. “The Calm during the Storm:
Snowfall Events Decrease the Movement Rates of Grey Wolves
(Canis lupus).” PLoS One 13: e0205742.

Dumont, A., J.-P. Ouellet, M. Crête, and J. Huot. 2005. “Winter For-
aging Strategy of White-Tailed Deer at the Northern Limit of
Its Range.” �Ecoscience 12: 476–84.

Elder, K., D. Cline, G. E. Liston, and R. Armstrong. 2009. “NASA
Cold Land Processes Experiment (CLPX 2002/03): Field Mea-
surements of Snowpack Properties and Soil Moisture.” Journal
of Hydrometeorology 10: 320–9.

Elder, K., J. Dozier, and J. Michaelsen. 1991. “Snow Accumulation
and Distribution in an Alpine Watershed.” Water Resources
Research 27: 1541–52.

Elder, K., W. Rosenthal, and R. Davis. 1998. “Estimating the Spatial
Distribution of Snow Water Equivalence in a Montane Water-
shed.” Hydrological Processes 12: 1793–808.

Erxleben, J., K. Elder, and R. Davis. 2002. “Comparison of Spatial
Interpolation Methods for Estimating Snow Distribution in the
Colorado Rocky Mountains.” Hydrological Processes 16:
3627–49.

Fancy, S. G., and R. G. White. 1985. “Energy Expenditures by Cari-
bou while Cratering in Snow.” Journal of Wildlife Management
49: 987–93.

Fancy, S. G., and R. G. White. 1987. “Energy Expenditures for Loco-
motion by Barren-Ground Caribou.” Canadian Journal of
Zoology 65: 122–8.

Farnes, P., C. Heydon, and K. Hansen. 1999. Snowpack Distribution
across Yellowstone National Park. Final report CA1268-1-9014.
Bozeman, MT: Department of Earth Sciences, Montana State
University.

Feltner, J. 2021. “Effects of Wolf and Grizzly Bear Recovery on Cou-
gars in a Multi-Use System.” Dissertation, University of
Montana.

Fernandes, R., C. Prevost, F. Canisius, S. G. Leblanc, M. Maloley, S.
Oakes, K. Holman, and A. Knudby. 2018. “Monitoring Snow
Depth Change across a Range of Landscapes with Ephemeral
Snowpacks Using Structure from Motion Applied to Lightweight
Unmanned Aerial Vehicle Videos.” The Cryosphere 12: 3535–50.

Fortin, M.-J. 2020. “Chapter 12: Spatial Structure in Population
Data.” In Population Ecology in Practice, edited by D. L. Mur-
ray and B. K. Sandercock, 299–314. Oxford, UK: John Wiley
and Sons, Ltd.

Gese, E. M., and S. Grothe. 1995. “Analysis of Coyote Predation on
Deer and Elk during Winter in Yellowstone National Park,
Wyoming.” American Midland Naturalist 133: 36–43.

Gilbert, S. L., K. J. Hundertmark, D. K. Person, M. S. Lindberg, and
M. S. Boyce. 2017. “Behavioral Plasticity in a Variable Environ-
ment: Snow Depth and Habitat Interactions Drive Deer Move-
ment in Winter.” Journal of Mammalogy 98: 246–59.

ECOSPHERE 21 of 25

 21508925, 2022, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4094 by U

niversity O
f A

laska Fairbanks, W
iley O

nline L
ibrary on [24/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Glass, T. W., G. A. Breed, G. E. Liston, A. K. Reinking, M. D.
Robards, and K. Kielland. 2021. “Spatiotemporally Variable
Snow Properties Drive Habitat Use of an Arctic Mes-
opredator.” Oecologia 195: 887–99.

Greene, E., K. Birkeland, K. Elder, I. McCammon, M. Staples, and
D. Sharaf. 2016. Snow, Weather, and Avalanches: Observation
Guidelines for Avalanche Programs in the United States, 3rd ed.
Victor, ID: American Avalanche Association.

Gurarie, E., M. Hebblewhite, K. Joly, A. P. Kelly, J. Adamczewski,
S. C. Davidson, T. Davison, et al. 2019. “Tactical Departures
and Strategic Arrivals: Divergent Effects of Climate and
Weather on Caribou Spring Migrations.” Ecosphere 10: e02971.

Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and
K. J. Bayr. 2002. “MODIS Snow-Cover Products.” Remote Sens-
ing of Environment 83: 181–94.

Hannula, H.-R., J. Lemmetyinen, A. Kontu, C. Derksen, and J.
Pulliainen. 2016. “Spatial and Temporal Variation of Bulk
Snow Properties in Northern Boreal and Tundra Environ-
ments Based on Extensive Field Measurements.” Geoscientific
Instrumentation, Methods and Data Systems 5: 347–63.

Hedrick, A., H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D.
Cline. 2015. “Independent Evaluation of the SNODAS Snow
Depth Product Using Regional-Scale Lidar-Derived Measure-
ments.” The Cryosphere 9: 13–23.

Heilig, A., C. Mitterer, L. Schmid, N. Wever, J. Schweizer, H. P.
Marshall, and O. Eisen. 2015. “Seasonal and Diurnal Cycles of
Liquid Water in Snow – Measurements and Modeling.” Jour-
nal of Geophysical Research: Earth Surface 120: 2139–54.

Heinrich, B. 2017. “Winter Strategies of Ruffed Grouse in a Mixed
Northern Forest.” Northeastern Naturalist 24: B55–71.

Hong, L., and S. E. Page. 2004. “Groups of Diverse Problem Solvers
Can Outperform Groups of High-Ability Problem Solvers.”
Proceedings of the National Academy of Sciences 101: 16385–9.

Horne, J. S., M. A. Hurley, C. G. White, and J. Rachael. 2019.
“Effects of Wolf Pack Size and Winter Conditions on Elk Mor-
tality.” Journal of Wildlife Management 83: 1103–16.

Huff, D. E., and J. D. Varley. 1999. “Natural Regulation in Yellow-
stone National Park’s Northern Range.” Ecological Applica-
tions 9: 17–29.

Huntington, H. P. 2000. “Using Traditional Ecological Knowledge
in Science: Methods and Applications.” Ecological Applications
10: 1270–4.

Hupp, J. W., and C. E. Braun. 1989. “Topographic Distribution of
Sage Grouse Foraging in Winter.” Journal of Wildlife Manage-
ment 53: 823–9.

Hurley, M. A., M. Hebblewhite, P. M. Lukacs, J. J. Nowak, J.-M.
Gaillard, and C. Bonenfant. 2017. “Regional-Scale Models for
Predicting Overwinter Survival of Juvenile Ungulates.” Journal
of Wildlife Management 81: 364–78.

Inman, R. M., K. H. Inman, M. L. Packila, and A. J. McCue. 2007.
“Chapter 4: Wolverine Reproductive Rates and Maternal Habi-
tat in Greater Yellowstone.” In Greater Yellowstone Wolverine
Program Cumulative Report 65–84. New York, NY: Wildlife
Conservation Society.

Jackson, N. J., K. M. Stewart, M. J. Wisdom, D. A. Clark, and M. M.
Rowland. 2021. “Demographic Performance of a Large Herbi-
vore: Effects of Winter Nutrition and Weather.” Ecosphere 12:
e03328.

John, C., D. Miller, and E. Post. 2020. “Regional Variation in
Green-Up Timing along a Caribou Migratory Corridor: Spatial
Associations with Snowmelt and Temperature.” Arctic, Antarc-
tic, and Alpine Research 52: 416–23.

Karniski, N. 2014. “The Effects of Snow on American Martens
(Martes americana) and Fishers (Martes pennanti) in the
Adirondack Mountains of New York.” Thesis, State University
of New York.

Kattelmann, R., K. Elder, and J. Dozier. 1988. “Monitoring Basin-
Wide Snowmelt with Ablation Stakes.” In Proceedings of the
International Snow Science Workshop, Whistler, BC, 259–61.
Revelstoke, British Columbia, Canada: Canadian Avalanche
Association. October 12–15.

Kauffman, M. J., N. Varley, D. W. Smith, D. R. Stahler, D. R.
MacNulty, and M. S. Boyce. 2007. “Landscape Heterogeneity
Shapes Predation in a Newly Restored Predator-Prey System.”
Ecology Letters 10: 690–700.

Keiter, R. B. 1991. “An Introduction to the Ecosystem Management
Debate.” In The Greater Yellowstone Ecosystem: Redefining
America’s Wilderness Heritage, edited by R. B. Keiter and M. S.
Boyce, 3–18. New Haven, CT: Yale University Press.

Kinar, N. J., and J. W. Pomeroy. 2015. “Measurement of the Physi-
cal Properties of the Snowpack.” Reviews of Geophysics 53:
481–544.

Legendre, P., and L. Legendre. 2012. Numerical Ecology, 3rd ed.
Oxford, UK: Elsevier.

Loe, L. E., G. E. Liston, G. Pigeon, K. Barker, N. Horvitz, A. Stien,
M. Forchhammer, et al. 2020. “The Neglected Season: Warmer
Autumns Counteract Harsher Winters and Promote Popula-
tion Growth in Arctic Reindeer.” Global Change Biology 27:
993-1002.

Li, D., M. L. Wrzesien, M. Durand, J. Adam, and D. P. Lettenmaier.
2017. “How Much Runoff Originates as Snow in the Western
United States, and How Will That Change in the Future?”
Geophysical Research Letters 44: 6163–72.

Liston, G. E. 1995. “Local Advection of Momentum, Heat, and
Moisture during the Melt of Patchy Snow Covers.” Journal of
Applied Meteorology 34: 1705–15.

Liston, G. E., and K. Elder. 2006a. “A Distributed Snow-Evolution
Modeling System (SnowModel).” Journal of Hydrometeorology
7: 1259–76.

Liston, G. E., and K. Elder. 2006b. “A Meteorological Distribution
System for High-Resolution Terrestrial Modeling (MicroMet).”
Journal of Hydrometeorology 7: 217–34.

Liston, G. E., R. B. Haehnel, M. Sturm, C. A. Hiemstra, S.
Berezovskaya, and R. D. Tabler. 2007. “Simulating Complex
Snow Distributions in Windy Environments Using SnowTran-
3D.” Journal of Glaciology 53: 241–56.

Liston, G. E., and D. K. Hall. 1995. “An Energy Balance Model of
Lake Ice Evolution.” Journal of Glaciology 41: 373–82.

Liston, G. E., and C. A. Hiemstra. 2008. “A Simple Data Assimila-
tion System for Complex Snow Distributions (SnowAssim).”
Journal of Hydrometeorology 9: 989–1004.

Liston, G. E., and C. A. Hiemstra. 2011. “Representing Grass– and
Shrub–Snow–Atmosphere Interactions in Climate System
Models.” Journal of Climate 24: 2061–79.

Liston, G. E., C. A. Hiemstra, K. Elder, and D. W. Cline. 2008.
“Meso-Cell Study Area (MSA) Snow Distributions for the Cold

22 of 25 REINKING ET AL.

 21508925, 2022, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4094 by U

niversity O
f A

laska Fairbanks, W
iley O

nline L
ibrary on [24/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Land Processes Experiment (CLPX).” Journal of Hydrometeo-
rology 9: 957–76.

Liston, G. E., P. Itkin, J. Stroeve, M. Tschudi, J. S. Stewart, S. H.
Pedersen, A. K. Reinking, and K. Elder. 2020. “A Lagrangian
Snow-Evolution System for Sea-Ice Applications (SnowModel-
LG): Part I—Model Description.” Journal of Geophysical
Research: Oceans 125: e2019JC015913.

Liston, G. E., J. P. McFadden, M. Sturm, and R. A. S. Pielke. 2002.
“Modelled Changes in Arctic Tundra Snow, Energy and Moisture
Fluxes Due to Increased Shrubs.” Global Change Biology 8: 17–32.

Liston, G. E., and S. H. Mernild. 2012. “Greenland Freshwater Run-
off, Part I: A Runoff Routing Model for Glaciated and Non-
Glaciated Landscapes (HydroFlow).” Journal of Climate 25:
5997–6014.

Liston, G. E., C. J. Perham, R. T. Shideler, and A. N. Cheuvront.
2016. “Modeling Snowdrift Habitat for Polar Bear Dens.” Eco-
logical Modelling 320: 114–34.

Liston, G. E., and M. Sturm. 1998. “A Snow-Transport Model for
Complex Terrain.” Journal of Glaciology 44: 498–516.

Liston, G. E., J.-G. Winther, O. Bruland, H. Elvehøy, and K. Sand.
1999. “Below-Surface Ice Melt on the Coastal Antarctic Ice
Sheet.” Journal of Glaciology 45: 273–85.

Lundmark, C., and J. P. Ball. 2008. “Living in Snowy Environments:
Quantifying the Influence of Snow on Moose Behavior.” Arc-
tic, Antarctic, and Alpine Research 40: 111–8.

Magoun, A. J., M. D. Robards, M. L. Packila, and T. W. Glass. 2017.
“Detecting Snow at the Den-Site Scale in Wolverine Denning
Habitat.” Wildlife Society Bulletin 41: 381–7.

Mahoney, P. J., G. E. Liston, S. LaPoint, E. Gurarie, B. Mangipane,
A. G. Wells, T. J. Brinkman, et al. 2018. “Navigating Snow-
scapes: Scale-Dependent Responses of Mountain Sheep to
Snowpack Properties.” Ecological Applications 28: 1715–29.

Mair, L., A. C. Mill, P. A. Robertson, S. P. Rushton, M. D. F.
Shirley, J. P. Rodriguez, and P. J. K. McGowan. 2018. “The
Contribution of Scientific Research to Conservation Planning.”
Biological Conservation 223: 82–96.

Mao, J. S., M. S. Boyce, D. W. Smith, F. J. Singer, D. J. Vales, J. M.
Vore, and E. H. Merrill. 2005. “Habitat Selection by Elk before
and after Wolf Reintroduction in Yellowstone National Park.”
Journal of Wildlife Management 69: 1691–707.

Marjakangas, A. 1990. “A Suggested Antipredator Function for
Snow-Roosting Behaviour in the Black Grouse Tetrao tetrix.”
Scandinavian Journal of Ornithology 21: 77–8.

Meek, D. W., and J. L. Hatfield. 1994. “Data Quality Checking for
Single Station Meteorological Databases.” Agricultural and
Forest Meteorology 69: 85–109.

Middleton, A. D., M. J. Kauffman, D. E. McWhirter, J. G. Cook,
R. C. Cook, A. A. Nelson, M. D. Jimenez, and R. W. Klaver.
2013. “Animal Migration amid Shifting Patterns of Phenology
and Predation: Lessons from a Yellowstone Elk Herd.” Ecology
94: 1245–56.

Mills, J. S. 1848. Principles of Political Economy. London, UK: John
W. Parker.

Murray, D. L., and S. Boutin. 1991. “The Influence of Snow on Lynx
and Coyote Movements: Does Morphology Affect Behavior?”
Oecologia 88: 463–9.

National Science Foundation [NSF]. 2018. Building the Future:
Investing in Discovery and Innovation. NSF Strategic Plan for

Fiscal Years 2018–2022. National Science Foundation. https://
www.nsf.gov/pubs/2018/nsf18045/nsf18045.pdf.

Nelson, M. E., and L. D. Mech. 1986. “Relationship between Snow
Depth and Gray Wolf Predation on White-Tailed Deer.” Jour-
nal of Wildlife Management 50: 471–4.

Oliver, R. Y., D. P. W. Ellis, H. E. Chmura, J. S. Krause, J. H. Perez,
S. K. Sweet, L. Gough, J. C. Wingfield, and N. T. Boelman.
2018. “Eavesdropping on the Arctic: Automated Bioacoustics
Reveal Dynamics in Songbird Breeding Phenology.” Science
Advances 4: eaaq1084.

Oliver, R. Y., P. J. Mahoney, E. Gurarie, N. Krikun, B. C. Weeks, M.
Hebblewhite, G. Liston, and N. Boelman. 2020. “Behavioral
Responses to Spring Snow Conditions Contribute to Long-
Term Shift in Migration Phenology in American Robins.”
Environmental Research Letters 15: 045003.

O’Neill, R. V., D. L. DeAngelis, J. B. Waide, and T. F. H. Allen.
1986. A Hierarchical Concept of Ecosystems. Princeton, NJ:
Princeton University Press.

Pan, C. G., P. B. Kirchner, J. S. Kimball, and J. Du. 2020. “A Long-
Term Passive Microwave Snowoff Record for the Alaska
Region 1988–2016.” Remote Sensing 12: 153.

Parker, K. L., C. T. Robbins, and T. A. Hanley. 1984. “Energy
Expenditures for Locomotion by Mule Deer and Elk.” Journal
of Wildlife Management 48: 474–88.

Pedersen, Å. Ø., J. Stien, S. Albon, E. Fuglei, K. Isaksen, G. Liston,
J. U. Jepsen, et al. 2020. “Climate-Ecological Observatory for
Arctic Tundra (COAT).” In State of Environmental Science in
Svalbard (SESS) Report 2019, edited by V. den Heuvel, et al.,
58–83. Longyearbyen, Svalbard: Svalbard Integrated Arctic
Earth Observing System.

Pedersen, S. H., T. W. Bentzen, A. K. Reinking, G. E. Liston, K.
Elder, E. A. Lenart, A. K. Prichard, and J. M. Welker. 2021.
“Quantifying Effects of Snow Depth on Caribou Winter Range
Selection and Movement in Arctic Alaska.” Movement Ecology
9: 1–24.

Pedersen, S. H., G. E. Liston, M. P. Tamstorf, J. Abermann, M.
Lund, and N. M. Schmidt. 2018. “Quantifying Snow Controls
on Vegetation Greenness.” Ecosphere 9: e02309.

Pedersen, S. H., G. E. Liston, M. P. Tamstorf, A. Westergaard-
Nielsen, and N. M. Schmidt. 2015. “Quantifying Episodic Snow-
melt Events in Arctic Ecosystems.” Ecosystems 18: 839–56.

Peers, M. J. L., Y. N. Majchrzak, A. K. Menzies, E. K. Studd, G.
Bastille-Rousseau, R. Boonstra, M. Humphries, et al. 2020.
“Climate Change Increases Predation Risk for a Keystone Spe-
cies of the Boreal Forest.” Nature Climate Change 10: 1149–53.

Petty, S. K., B. Zuckerberg, and J. N. Pauli. 2015. “Winter Condi-
tions and Land Cover Structure the Subnivium, a Seasonal
Refuge beneath the Snow.” PLoS One 10: e0127613.

Poirier, M., G. Gauthier, and F. Domine. 2019. “What Guides Lem-
mings Movements through the Snowpack?” Journal of Mam-
malogy 100: 1416–26.

Pomeroy, J., and D. Gray. 1995. Snowcover Accumulation, Reloca-
tion, and Management. Science Report 7: 1–144. Saskatoon,
Saskatchewan, Canada: National Hydrology Research Insti-
tute, Environment Canada.

Pozzanghera, C. B., K. J. Sivy, M. S. Lindberg, and L. R. Prugh. 2016.
“Variable Effects of Snow Conditions across Boreal Mesocarnivore
Species.” Canadian Journal of Zoology 94: 697–705.

ECOSPHERE 23 of 25

 21508925, 2022, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4094 by U

niversity O
f A

laska Fairbanks, W
iley O

nline L
ibrary on [24/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.nsf.gov/pubs/2018/nsf18045/nsf18045.pdf
https://www.nsf.gov/pubs/2018/nsf18045/nsf18045.pdf


Pruitt, W. O., Jr. 1957. “Observations on the Bioclimate of Some
Taiga Mammals.” Arctic 10: 130–8.

Ramsay, B. H. 1998. “The Interactive Multisensor Snow and Ice
Mapping System.” Hydrological Processes 12: 1537–46.

Reinking, A. K., K. T. Smith, K. L. Monteith, T. W. Mong, M. J.
Read, and J. L. Beck. 2018. “Intrinsic, Environmental, and
Anthropogenic Factors Related to Pronghorn Summer Mortal-
ity.” Journal of Wildlife Management 82: 608–17.

Rickbeil, G. J. M., J. A. Merkle, G. Anderson, M. P. Atwood, J. P.
Beckmann, E. K. Cole, A. B. Courtemanch, et al. 2019. “Plastic-
ity in Elk Migration Timing Is a Response to Changing Environ-
mental Conditions.” Global Change Biology 25: 2368–81.

Rose, R. A., D. Byler, J. R. Eastman, E. Fleishman, G. Geller, S.
Goetz, L. Guild, et al. 2015. “Ten Ways Remote Sensing Can
Contribute to Conservation.” Conservation Biology 29: 350–9.

Ruth, T. K., M. A. Haroldson, K. M. Murphy, P. C. Buotte, M. G.
Hornocker, and H. B. Quigley. 2011. “Cougar Survival and
Source-Sink Structure on Greater Yellowstone’s Northern
Range.” Journal of Wildlife Management 75: 1381–98.

Sagarin, R., and A. Pauchard. 2010. “Observational Approaches in
Ecology Open New Ground in a Changing World.” Frontiers in
Ecology and the Environment 8: 379–86.

Schmidt, N. M., T. R. Christensen, and T. Roslin. 2017. “A High
Arctic Experience of Uniting Research and Monitoring.”
Earth’s Future 5: 650–4.

Schmidt, N. M., J. Reneerkens, J. H. Christensen, M. Olesen, and T.
Roslin. 2019. “An Ecosystem-Wide Reproductive Failure with
More Snow in the Arctic.” PLoS Biology 17: e3000392.

Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and
R. S. Pulwarty. 1999. “Characteristics of the Western
United States Snowpack from Snowpack Telemetry (SNOTEL)
Data.” Water Resources Research 35: 2145–60.

Sexstone, G. A., C. A. Penn, G. E. Liston, K. E. Gleason, C. D.
Moeser, and D. W. Clow. 2021. “Spatial Variability in Seasonal
Snowpack Trends across the Rio Grande Headwaters (1984–
2017).” Journal of Hydrometeorology 21: 2713–33.

Shepard, D. 1968. “A Two-Dimensional Interpolation Function for
Irregularly-Spaced Data.” In Proceedings of the 1968 ACM
National Conference, New York, New York, USA, 517–24. New
York, NY: Association for Computing Machinery. August 27–29.

Shipley, A. A., J. Cruz, and B. Zuckerberg. 2020. “Personality Differ-
ences in the Selection of Dynamic Refugia Have Demographic
Consequences for a Winter-Adapted Bird.” Proceedings of the
Royal Society of London B: Biological Sciences 287: 20200609.

Shipley, A. A., M. J. Sheriff, J. N. Pauli, and B. Zuckerberg. 2019.
“Snow Roosting Reduces Temperature-Associated Stress in a
Wintering Bird.” Oecologia 190: 309–21.

Sirén, A. P. K., M. Somos-Valenzuela, C. Callahan, J. R. Kilborn, T.
Duclos, C. Tragert, T. L. Morelli, M. Rowcliffe, and S. Ryan.
2018. “Looking beyond Wildlife: Using Remote Cameras to
Evaluate Accuracy of Gridded Snow Data.” Remote Sensing in
Ecology and Conservation 4: 375–86.

Sirén, A. P. K., C. S. Sutherland, C. A. Bernier, K. J. Royar, J. R. Kilborn,
C. B. Callahan, R. M. Cliché, L. S. Prout, and T. L. Morelli. 2021.
“Abiotic Stress and Biotic Factors Mediate Range Dynamics on
Opposing Edges.” Journal of Biogeography 48: 1758–72.

Sivy, K. J., A. W. Nolin, C. L. Cosgrove, and L. R. Prugh. 2018.
“Critical Snow Density Threshold for Dall Sheep (Ovis dalli
dalli).” Canadian Journal of Zoology 96: 1170–7.

Stillinger, T., D. A. Roberts, N. M. Collar, and J. Dozier. 2019. “Cloud
Masking for Landsat 8 and MODIS Terra over Snow-Covered
Terrain: Error Analysis and Spectral Similarity between Snow
and Cloud.”Water Resources Research 55: 6169–84.

Stuefer, S., D. L. Kane, and G. E. Liston. 2013. “In Situ Snow Water
Equivalent Observations in the US Arctic.” Hydrology Research
44: 21–34.

Sturm, M., J. Holmgren, and G. E. Liston. 1995. “A Seasonal Snow
Cover Classification System for Local to Global Applications.”
Journal of Climate 8: 1261–83.

Sturm, M., and G. E. Liston. 2021. “Revisiting the Global Seasonal
Snow Classification: An Updated Dataset for Earth System
Applications.” Journal of Hydrometeorology 22: 2917–38.

Sturm, M., B. Taras, G. E. Liston, C. Derksen, T. Jonas, and J. Lea. 2010.
“Estimating Snow Water Equivalent Using Snow Depth Data and
Climate Classes.” Journal of Hydrometeorology 11: 1380–94.

Sturm, M., and A. M. Wagner. 2010. “Using Repeated Patterns in
Snow Distribution Modeling: An Arctic Example.” Water
Resources Research 46: W12549.

Takatsuki, S., Y. Kobayashi-Hori, and T. Ito. 1995. “Food Habits of
Japanese Serow (Capricornis crispus) in the Western Foothills
of Mt. Zao, with Reference to Snow Cover.” Journal of the
Mammalian Society of Japan 20: 151–5.

Telfer, E. S., and J. P. Kelsall. 1979. “Studies of Morphological
Parameters Affecting Ungulate Locomotion in Snow.” Cana-
dian Journal of Zoology 57: 2153–9.

Thompson, F. R., III, and E. K. Fritzell. 1988. “Ruffed Grouse Win-
ter Roost Site Preference and Influence on Energy Demands.”
Journal of Wildlife Management 52: 454–60.

U.S. National Ice Center [USNIC]. 2008. IMS Daily Northern Hemi-
sphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolu-
tions, Version 1. Boulder, CO: National Snow and Ice Data
Center. https://doi.org/10.7265/N52R3PMC.

Uboni, A., D. W. Smith, J. S. Mao, D. R. Stahler, and J. A. Vucetich.
2015. “Long- and Short-Term Temporal Variability in Habitat
Selection of a Top Predator.” Ecosphere 6: 51.

Urban, D. L., R. V. O’Neill, and H. H. Shugart, Jr. 1987. “Landscape
Ecology: A Hierarchical Perspective Can Help Scientists
Understand Spatial Patterns.” Bioscience 37: 119–27.

Van de Kerk, M., S. Arthur, M. Bertram, B. Borg, J. Herriges, J.
Lawler, B. Mangipane, C. Lambert Koizumi, B. Wendling, and
L. Prugh. 2020. “Environmental Influences on Dall’s Sheep
Survival.” Journal of Wildlife Management 84: 1127–38.

Van de Kerk, M., D. Verbyla, A. W. Nolin, K. J. Sivy, and L. R.
Prugh. 2018. “Range-Wide Variation in the Effect of Spring
Snow Phenology on Dall Sheep Population Dynamics.” Envi-
ronmental Research Letters 13: 075008.

Visscher, D. R., E. H. Merrill, D. Fortin, and J. L. Frair. 2006.
“Estimating Woody Browse Availability for Ungulates at
Increasing Snow Depths.” Forest Ecology and Management
222: 348–54.

Watson, F. G. R., T. N. Anderson, W. B. Newman, S. E.
Alexander, and R. A. Garrott. 2006. “Optimal Sampling
Schemes for Estimating Mean Snow Water Equivalents in
Stratified Heterogeneous Landscapes.” Journal of Hydrology
328: 432–52.

Watson, F. G. R., W. B. Newman, J. C. Coughlan, and R. A. Garrott.
2006. “Testing a Distributed Snowpack Simulation Model against
Spatial Observations.” Journal of Hydrology 328: 453–66.

24 of 25 REINKING ET AL.

 21508925, 2022, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4094 by U

niversity O
f A

laska Fairbanks, W
iley O

nline L
ibrary on [24/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.7265/N52R3PMC


Whitaker, D. M., and D. F. Stauffer. 2003. “Night Roost Selection
during Winter by Ruffed Grouse in the Central Appalachians.”
Southeastern Naturalist 2: 377–92.

White, K. S., G. W. Pendleton, and E. Hood. 2009. “Effects of Snow
on Sitka Black-Tailed Deer Browse Availability and Nutri-
tional Carrying Capacity in Southeastern Alaska.” Journal of
Wildlife Management 73: 481–7.

Wilmers, C. C., M. C. Metz, D. R. Stahler, M. T. Kohl, C. Geremia,
and D. W. Smith. 2020. “How Climate Impacts the Composi-
tion of Wolf Killed-Elk in Northern Yellowstone National
Park.” Journal of Animal Ecology 89: 1511–9.

Wockner, G., F. Singer, M. Coughenour, and P. Farnes. 2002. Appli-
cation of a Snow Model for Yellowstone National Park. Fort Col-
lins, CO: Natural Resources Ecology Laboratory, Colorado State
University. https://mountainscholar.org/handle/10217/231604.

Wulder, M. A., T. R. Loveland, D. P. Roy, C. J. Crawford, J. G.
Masek, C. E. Woodcock, R. G. Allen, et al. 2019. “Current Sta-
tus of Landsat Program, Science, and Applications.” Remote
Sensing of Environment 225: 127–47.

Yegros-Yegros, A., I. Rafols, and P. D’Este. 2015. “Does Interdisci-
plinary Research Lead to Higher Citation Impact? The Differ-
ent Effect of Proximal and Distal Interdisciplinarity.” PLoS
One 10: e0135095.

Yueh, S., S. Dinardo, A. Akgoray, R. West, D. Cline, and K. Elder.
2009. “Airborne Ku-Band Polarimetric Radar Remote Sensing
of Terrestrial Snow Cover.” IEEE Transactions on Geoscience
and Remote Sensing 47: 3347–64.

How to cite this article: Reinking, Adele K.,
Stine Højlund Pedersen, Kelly Elder, Natalie
T. Boelman, Thomas W. Glass, Brendan A. Oates,
Scott Bergen, et al. 2022. “Collaborative Wildlife–
Snow Science: Integrating Wildlife and Snow
Expertise to Improve Research and Management.”
Ecosphere 13(6): e4094. https://doi.org/10.1002/
ecs2.4094

ECOSPHERE 25 of 25

 21508925, 2022, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4094 by U

niversity O
f A

laska Fairbanks, W
iley O

nline L
ibrary on [24/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://mountainscholar.org/handle/10217/231604
https://doi.org/10.1002/ecs2.4094
https://doi.org/10.1002/ecs2.4094

	Collaborative wildlife-snow science: Integrating wildlife and snow expertise to improve research and management
	MOTIVATION
	Incentive for collaboration
	Moving forward together

	WILDLIFE-SNOW COLLABORATION IN FIVE STEPS
	Step 1: Identify relevant snow properties
	Step 2: Specify spatial, temporal, and informational requirements
	Fit-for-purpose snow data
	Defining dataset specifications

	Step 3: Build the necessary datasets
	Fundamentals of data-model fusion
	Creating new, wildlife-relevant variables

	Step 4: Implement quality control procedures
	Step 5: Incorporate snow information in wildlife analyses

	SNOW DATA FOR WILDLIFE APPLICATIONS
	Field measurements
	Remote sensing products
	Data-model fusion systems
	Inverse distance weighted interpolation
	Strengths and weaknesses

	Snow Data Assimilation System
	Strengths and weaknesses

	Yellowstone Snow Model
	Strengths and weaknesses

	SnowModel
	Strengths and weaknesses



	A VISION FOR FUTURE WILDLIFE-SNOW SCIENCE
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	REFERENCES


