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Abstract
Wildlife-vehicle collisions imperil humans, wildlife, and property. Collisions with moose (Alces
alces) are especially consequential and there are indications they may increase during severe
winters. We tested hypotheses regarding the influence of moose movements and vehicular traffic
patterns on collision risk. We first modeled daily snow depth and accumulation across
5.6 million km2 of the North American Arctic-Boreal region. Next, we analyzed the movements
and road use of 113 GPS-collared moose in response to snow depth. Finally, we examined the
influence of these snow properties on vehicular traffic and 7680 moose-vehicle collisions. As winter
progressed and the snowpack deepened in each study area, GPS-collared moose migrated to lower
elevations, leading them into areas with shallower snow but higher road densities. This elevational
migration corresponded with a higher probability of road-use by moose (by up to ten-fold) in
winter than in summer. Corresponding to these patterns, moose-vehicle collisions were 2.4–5.7
times more frequent from December through February (compared to early summer). Collision risk
was highest when and where snow depth was less than 120 cm, indicating that migration into areas
with shallower snow increased collision risk in those areas. Most (82%) moose-vehicle collisions
occurred after dark. This pattern was strongest during winter, when nighttime traffic volumes were
eight times higher than summer due to longer nights. Overall, our findings suggest that concurrent
seasonal changes in human and wildlife behavior increase the frequency of moose-vehicle
collisions during winter. Snow depth influences collisions primarily through its impacts on moose
movement, while strong seasonal changes in daylight hours cause an increase in nighttime traffic
that further contributes to risk. This information may help predict times and places where risk of
moose-vehicle collisions are highest and to develop seasonally dynamic mitigation strategies.
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1. Introduction

Wildlife-vehicle collisions (WVCs) imperil wildlife,
cause human deaths, and damage property. In the
United States alone, twomillion collisions with ungu-
lates kill ∼440 people, injure ∼59 000 people, and
cause more than US$10 billion of economic losses
annually (Huijser et al 2008, Conover 2019). Colli-
sions also endanger wildlife populations, with vehicle
strikes estimated as the second largest cause of
anthropogenic mortality (Collins and Kays 2011).
Expanding road networks, coupled with increasing
wildlife populations, such as deer in North America
and Europe (Côté et al 2004, Apollonio et al 2010),
have caused steady growth inWVCs in recent decades
(Huijser et al 2008, Hill et al 2019). A projected 60%
expansion in the global road network by 2050 means
the problem will likely continue to grow (Laurance
et al 2014).

WVCs are the product of human and animal
behavior, both of which respond to processes at
various timescales. Seasonal movements associated
with migration or reproduction are driven by envir-
onmental cues (Nelson 1995, Monteith et al 2011,
Rivrud et al 2016, Pedersen et al 2021), whereas daily
movements can follow both cyclical circadian pat-
terns (Owen-Smith and Goodall 2014, Cunningham
et al 2019) and/or be more dynamic, like avoid-
ing areas with fresh, deep snow (Mahoney et al
2018). Human driving patterns also play a key role
in WVCs, but unlike animal activity, which responds
to solar time (Nouvellet et al 2012), the timing
of human activity is largely determined by clock-
time (Cunningham et al 2022). This means sea-
sonal changes to day length can alter the amount of
traffic at night, when animals are most difficult for
drivers to see (Cunningham et al 2022). Understand-
ing the mechanisms that increase collision risk could
facilitate real-time predictions of WVC risk, with
even modest mitigation improvements capable of
providing large economic and social benefits (Raynor
et al 2021).

Collisions with moose (Alces alces) are the most
common and consequential form of ungulate-vehicle
collisions in Alaska and western Canada. Compared
to collisionswith deer (Odocileus spp.),moose-vehicle
collisions are 13 times more likely to cause human
death and are twice as expensive to repair (∼$7500
in 2022 US dollars; Huijser et al 2009). In Alaska and
western Canada, moose are of high socio-ecological
importance because they are a staple subsistence
resource, particularly in rural and indigenous com-
munities (Ballew et al 2006, Titus et al 2009). In
some regions, moose-vehicle and moose-train colli-
sions increase during winter (Gundersen et al 1998,
Noordeloos 2016, McDonald et al 2019) and during
years with deep snow (Rolandsen et al 2011). Like

most cold-adapted ungulates, moose are partially
migratory, with some individuals migrating between
summer and winter ranges, while others remain year-
round residents (Singh et al 2012, White et al 2014).
Migration of ungulates can occur across large dis-
tances (e.g. mean of ∼40 km and max of 196 km
for moose; Mauer 1998) or shorter-distance eleva-
tional gradients (John and Post 2021), with winter
ranges usually at lower elevations below tree-line
where snow is typically shallower. Travel between
seasonal ranges can be especially dangerous. For
example, migration corridors are the most likely loc-
ations for collisions with mule deer (O. hemionus)
(Coe et al 2015). Understanding the key determinants
of moose-vehicle collisions would potentially assist
managers to develop mitigation strategies that target
the processes that contribute most to increased risk.

We pose three non-exclusive hypotheses for how
winter processes could shape moose-vehicle collision
risk:

(a) Migration promotes road use—as winter pro-
gresses, moose will migrate to lower elevations
where snow is shallower and forage ismore avail-
able (Joly et al 2015b). Because roads are usu-
allymore common in valleys and lowlands (Elsen
et al 2020), migration to lower elevations in
winter could place moose closer to roads and
therefore increase collision risk.

(b) Plowed roads facilitate travel—moose may
prefer travelling on plowed roads during winter
because movement through deep snow car-
ries higher metabolic costs (Parker et al 1984),
thereby increasing collision risk.

(c) Winter impairs driving—snowfall impairs driv-
ing conditions by reducing visibility and mak-
ing vehicles more difficult to control, leading to
increased frequency of vehicle collisions during
severe snow events (Khattak and Knapp 2001).
In addition, less daylight in winter causes a
higher proportion of traffic to occur at night
when animals are harder for drivers to see
(Cunningham et al 2022).

To address these hypotheses, we began by model-
ing snow properties over four decades across 5.6 mil-
lion km2 of the North American Arctic-Boreal region
(Liston et al 2022). Next, we examined the effect of
snow depth and daily snow accumulation on migra-
tion and road-use of 113 GPS-collared moose from
five study sites in Alaska and western Canada. Finally,
we modeled the influence of snow conditions on
vehicular traffic volumes and moose-vehicle collision
rates, aiming to characterize seasonal patterns in col-
lisions and identify snow conditions that increase col-
lision risk.
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2. Materials andmethods

2.1. Data sources
We used four independent data sources: GPS
locations of moose, vehicular traffic volumes, incid-
ents of moose-vehicle collisions, and simulated snow
properties.

2.1.1. Moose locations
We collected data from 113 GPS-collaredmoose from
five study areas across Alaska, the Yukon Territory,
British Columbia, and Alberta (figure 1). These study
sites spanned almost the entire latitudinal distribu-
tion of moose and represented a wide range of envir-
onmental and snow conditions (figure 1), from the
flat boreal forest of northern Alberta to north of the
Arctic Circle in Alaska. Data collection at each site
spanned two to five years between 2001 and 2013,
with location fix rates ranging from two to eight
hours. Data were cleaned to remove obvious fix errors
following protocols similar to Gupte et al (2022). See
table 1 for a summary of the GPS data and references
therein for methodological details.

2.1.2. Vehicular traffic volumes
The Alaska Department of Transportation collects
data on traffic volumes (vehicles per hour) at ∼130
permanent traffic stations spread across much of
the Alaskan road network (Grimes et al 2020). We
were provided with data from 104 stations from
2014–2018. Huijser et al (2008) report that ∼90%
of ungulate-vehicle collisions occur on two-lane
rural roads. Thus, to characterize traffic patterns on
roads most relevant to moose-vehicle collisions, we
excluded traffic stations within the cities of Anchor-
age and Fairbanks. We further thinned the dataset to
include only stations with >365 d of observations,
leaving 3.1 million observations of hourly traffic
volumes from 53 stations for our analysis (figure 1).

2.1.3. Moose-vehicle collisions
The governments of Alaska and British Columbia
collect comparable datasets of WVCs, including the
coordinates, date, and the species involved. The
Alaska dataset also includes the time of each colli-
sion (in one-hour bins). The Alaska Department of
Transportation providedWVC data from 2009–2017,
totaling 5084 moose-vehicle collisions (figure 1).
The British Columbia Department of Transportation
provided moose-vehicle collision data from 2011–
2020, but we excluded incidents from 2018 onwards
because of a change in data collection protocol, leav-
ing 2596 moose-vehicle collisions from 2011–2017
(figure 1).

2.1.4. Snow data
We simulated snow distribution and evolution
using MicroMet (Liston and Elder 2006b) and
SnowModel (Liston and Elder 2006a). SnowModel

incorporates first-order physics required to simulate
snow evolution within each of the global snow classes
(i.e. Ice, Tundra, Boreal Forest, Montane Forest,
Prairie, Maritime, and Ephemeral; (Liston and Sturm
2021, Sturm and Liston 2021). Processes simulated
by SnowModel include snow precipitation, blowing-
snow redistribution and sublimation, snow intercep-
tion by forest canopy, unloading, sublimation, snow
density evolution, and snowpack ripening and melt.
These modeling tools have been widely used for cli-
mate, hydrology, remote sensing, wildlife, vegetation,
avalanche, glacier and ice sheet mass balance (see
Liston et al (2020) for a sample).

We produced a SnowModel simulation covering
the NASA Arctic Boreal Vulnerability Experiment
(ABoVE) Core Domain comprising 5.6 million km2

of northern North America (figure S1). The simula-
tion was performed on a 3 km × 3 km grid using
a 3-hourly time step, for the period 1 September
1980 through 31 August 2020. Meteorological forcing
was provided by data products from NASA’s Modern
Era Retrospective-Analysis for Research and Applica-
tions (MERRA-2; Gelaro et al 2017). For this study of
moose, we used snow depth (cm) and snow accumu-
lation (cm over 24, 48, and 72 h). However, daily out-
puts for 15meteorological and snow-related variables
(figure S1) are available at the NASA ABoVE Distrib-
uted Active Archive Center (Liston et al 2022).

2.2. Statistical analyses
Our analyses involved three main themes: (a) move-
ments of GPS-collared moose, (b) seasonal changes
in traffic patterns, and (c) timing and predictors of
moose-vehicle collisions. All models were fit using
the mgcv package (Wood 2011) in R v4.1.2 (R Core
Team 2022).

2.2.1. Moose movement and road use
We modeled three aspects of moose movement: (a)
selection of snow depth, (b) elevational migration,
and (c) road use. To quantify selection for snow
depth, we constructed a coarse-scale step selection
function (SSF; Thurfjell et al 2014), but, rather than
distributing available locations based on step length,
we distributed five available locations for each used
location across each animal’s yearly home range (99%
kernel density estimate) (AMT package; Signer et al
2019). This scale reflects third-order selection; that
is, how a moose uses its home range (Johnson 1980,
Thurfjell et al 2014). Because the aim was to invest-
igate snow depth selection, we restricted the analysis
to winter months (1 December to 31 March) and
then extracted time-varying snow depth and vegeta-
tion class at each used and available location. Under
the expectation that moose prefer deciduous vegeta-
tion in winter (Hundertmark et al 1990, Burkholder
et al 2022), we aggregated land cover (30 m res-
olution; North American Land Change Monitoring
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Figure 1.Map of study domain. Left: Map of study area showing maximum snow depth for the year 2012. Dark grey points show
GPS locations from 113 moose from five study areas. Blue (Alaska) and red (British Columbia) points show the locations of 7680
moose-vehicle collisions from 2009–2017. Right: GPS locations overlaid on maps of maximum snow depth, illustrating the
shallowest and most homogenous snowpack, Fort McMurray, and the most spatially heterogeneous site, the Northern Rockies.
The full extent of snow modeling is shown in figure S1.

Table 1. Summary of GPS tracking data. We analyzed data from 113 moose from five study sites. Road density quantifies the density of
roads within a minimum convex polygon surrounding all GPS locations at each study site. The references describe the methodological
details for capturing and collaring moose.

Study location N Moose Years N fixes

Fix rate
(median;
hours)

Road density
(km km−2) References

Fort Mackay,
AB

25 2010–2012 133 519 2 0.359 (Neilson 2017)

Northern
Rockies, AB/BC

17 2008–2010 50 100 3 0.133 Peters et al
(2013)

Faro, YT 13 2002–2005 4589 3.6 0.029 Yukon
Government

Teslin, YT 23 2008–2010 73 570 4 0.016 Yukon
Government

Upper
Koyukuk, AK

35 2008–2013 71 675 8 0.041 Joly et al
(2015a, 2015b)

Total 113 2001–2013 333 453

System 2015) into four categories: coniferous forest,
mixed forest, deciduous forests/shrubs, and other.

SSFs are usually fit using conditional logistic
regression, which compares covariates at time-
matched used and available locations. Conditional
logistic regression is likelihood-equivalent to the
Cox proportional hazards model with a strata for
each used-available group (Signer et al 2019). We
therefore used the Cox proportional hazards distri-
bution and fit the model using a generalized additive
mixed model (GAMM), allowing us to fit non-linear
functions of covariates. The full model consisted of
the binary used/available locations in response to a
smooth function of snow depth that differed for each
study site, vegetation class, and a stratum for each
time-matched used-available group. We omitted Fort
McMurray from the SSF because negligible variation

in snow depth (figure 1) provided little scope for
moose to demonstrate preferences.

To investigate elevational migration, we modeled
seasonal changes in the elevation of moose at all
study sites (m2; table 2). For the response variable,
we extracted the elevation (meters) at each GPS loc-
ation using a 30 m resolution digital elevation model
(Abrams et al 2020). Using a GAMM with Gaussian
distribution, we modeled elevation in response to a
smooth function, differing by study site, of hydrolo-
gical day of year (starting on October 1). Because day
of year is a circular variable (i.e. 365 is next to 1),
we fit this relationship using a circular cubic regres-
sion spline, forcing the ends to meet (Wood 2017).
We also included a fixed effect for study site and a
random intercept for individual ID, allowing each site
and individual to have its own baseline elevation. We

4
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Table 2. Description of statistical models. All models were fitted using either a generalized additive model (GAM) or a generalized
additive mixed model (GAMM). ‘f ’ denotes a smooth, non-linear function of a continuous predictor variable. We use ‘×’ to indicate
various types of interactions (described in main text), including a by-factor interaction where a smooth function differs for each level of
a categorical variable (e.g. m2), or for tensor product interactions between continuous variables (e.g. m7).

Analysis Response Predictors
Model type;
distribution

Moose movement
m1. Moose selection of

snow
GPS locations
(used/avail.)

∼f(snow depth)× site+ veg+
(random= individual)

GAMM; step
selection
function

m2. Elevational migration Elevation (GPS;
continuous)

∼f(day)× site+ (random= individual) GAMM;
Gaussian

m3. Road use by moose Road use (GPS;
binary)

∼f(day)× site+ (random= individual) GAMM;
binomial

Traffic volume
m4A. Daily traffic 24-hr traffic

(count)
∼f(day)+ (random= station) GAMM;

quasipoisson
m4B. Nighttime traffic Nightly traffic

(count)
∼f(day)+ (random= station) GAMM;

quasipoisson
m5. Effect of snow on

traffic
Winter traffic
(count; scaled)

∼f(snowfall)× station+
(random= station)

GAMM;
Gaussian

Moose-vehicle collisions
m6. Timing of MVCs MVCs

(used/avail.)
∼f(day× time of collision) GAM; binomial

m7. Moose-vehicle
collisions

MVCs
(used/avail.)

∼f(day× snow
depth× region)+ f(snowfall)

GAM;
conditional
logistic

used a form of automatic model selection that allows
for an effect to be penalized out of the model if it was
not important (Marra and Wood 2011).

Finally, we modeled seasonal changes in road
use by moose at all study sites. We defined road
use as a binary variable depending on whether a
GPS location fell within 100 m of a road, defined
using shapefiles of roads and tracks fromOpen Street
Maps (OpenStreetMap Contributors 2021). Using a
GAMM with binomial distribution (m3; table 2), we
modeled the probability of road use in response to
the same explanatory variables as the model of eleva-
tional migration.

2.2.2. Traffic volume
We began by modeling seasonal changes in 24-hourly
and nightly traffic volumes in Alaska. To categorize
nightly traffic, we first calculated daily sunrise and
sunset times for the coordinates of each traffic sta-
tion using the ‘getSunlightTimes’ function of the sun-
calc package (Benoit and Achraf 2019). We defined
nighttime traffic as that which occurred between sun-
set and sunrise, but we acknowledge that twilight
can persist for much of the night during summer
at high latitudes. Separately for 24 h and nightly
traffic (m4A and m4B; table 2), we fit a GAMM
of traffic volume in response to (a) a smooth func-
tion of hydrological day of year and (b) a ‘factor
smooth’ interaction between hydrological day of year
and station ID, producing station-specific responses.

The factor smooth is analogous to a random slope
in a generalized linear mixed model (Pedersen et al
2019). We fit the model using a quasi-Poisson dis-
tribution to account for overdispersion in the traffic
counts (Ver Hoef and Boveng 2007). We fitted sim-
pler combinations of the variables and selected the
best-performing model using the generalized cross-
validation score (GCV; Wood 2004), where smaller
values indicate better model fit. To visualize the res-
ults of the best models, we predicted the mean traffic
volume for each day of the year (i.e. excluding station-
specific and random effects).

Next, we investigated the effect of 24 h snowfall
on winter traffic volume (m5; table 2). To do this, we
selected only winter traffic data (defined as between
1 November to 31 March). For each traffic station
separately, we scaled traffic volume by centering and
then dividing by a station’smean, such that a one-unit
change in scaled traffic volume reflects a change of
one standard deviation from a station’s mean. Using a
GAMM with Gaussian distribution, we modeled the
scaled nighttime traffic volume in response to (a) a
global smooth function of 24 h snow accumulation
and (b) a ‘by-factor’ smooth effect of snow accumu-
lation that differed for each traffic station. We a priori
restricted all smooth functions to have a maximum
of four knots because we did not expect complicated
responses. We fit simpler combinations of the vari-
ables and selected the best-performing model using
GCV.
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2.2.3. Moose-vehicle collisions
We used a case-control framework to evaluate the
effect of season and snow conditions on collision risk.
We did this by comparing snow conditions associ-
atedwith each collision against snow conditions at the
same location on 20 random days in the 90 d lead-
ing up to each collision. We chose not to distribute
available points on any days after a collision because
we assumed those days were no longer available for
a given moose-vehicle collision to occur on, as the
vast majority of collisions result in the animal’s death
(Huijser et al 2008). Case-control data is usually ana-
lyzed with conditional logistic regression, which, for
convenience, is usually fit with a Cox proportional
hazards model. We therefore fit the model using a
GAMwithCoxproportional hazards distribution and
a stratum for each case-control group.

We modeled the binary collision/non-collision
data in response to (a) a tensor product interac-
tion between hydrological day of year and snow depth
(cm) differing by region (Alaska or BritishColumbia),
(b) a smooth function of snow accumulation (cm)
at three different temporal scales, and (c) a stratum
for each used-available group. To select the most
explanatory scale of snow accumulation, we first tested
the full model to determine whether snow accumu-
lation over the previous 24, 48, or 72 h performed
best, under the expectation that snowstorms of longer
durations and larger magnitudes may have stronger
effects (Greaves et al in prep). Then, using the best-
performing snowfall accumulation period, we fit sim-
pler versions of the full model (day of year × snow
depth × region + snow accumulation), totaling 15
models (table S5). We selected the best model using
GCV.

Next, we modeled changes in the timing of col-
lisions across the entire year in Alaska, where colli-
sion times were recorded in one-hour bins. To dis-
tinguish periods where relative collision probably
differed from uniform, we created a used-available
dataset (similar to Borowik et al 2021). For the used
dataset, we included all collisions, and for the avail-
able dataset, we distributed ten points for each colli-
sion randomly across the 8760 (365 d × 24 h) hours
in a year, resulting in an approximately uniform dis-
tribution of days and times at which collisions could
have occurred. We fit the model using a GAM with
binomial distribution, with the binary collision/non-
collision data regressed against a tensor product inter-
action between time of day (1 h bins; 0–23) and the
hydrological day of year (1–366). We fit simpler ver-
sions of this model and selected the best-performing
model based on GCV.

3. Results

3.1. Moose movement
Moose preferred snow depths of ∼30 cm on aver-
age (figure 2) in areas with deciduous vegetation and

Figure 2.Moose select for moderate snow depths. During
winter, moose preferred snow depths of∼30 cm and
strongly avoided areas with deep snow. Colored lines
indicate site-specific effects, while the black line shows the
effect averaged across the four study sites. ‘n’ indicates the
number of GPS-collared moose at each site that were used
for this analysis.

mixed forests (table S1). Selection for snow depth
differed across study sites, but in general, moose
strongly selected against snow depths of more than
100 cm (figure 2; table S1). This selection against
deep snow corresponded with elevational migration:
as winter progressed and snow deepened (figure 3,
top row), GPS-collared moose migrated several hun-
dred meters lower in elevation (figure 3, middle row)
where snow was shallower (figure S2). This migra-
tion commenced well before snow reached maximal
depths. The exceptions to this weremoose at themost
homogenous study site, Fort McMurray, where there
was little topographic variation for moose to season-
ally exploit.

The best-performing model of road-use also con-
tained strong, site-specific seasonal effects, revealing
a marked increase in road-use that coincided with
the period in which moose were at their lowest elev-
ations. The probability of road use was generally low,
but it increased by up to ten times during winter/s-
pring compared to autumn (figure 3, bottom row).
Even though moose at Fort McMurray were unable
to migrate elevationally because of level topography
(middle row, figure 3), their road use also increased
substantially during winter (bottom row, figure 3).

3.2. Vehicular traffic
‘Rush hour’ consistently occurred at around ∼5 pm
across the year, irrespective of seasonal changes in day
length (figure 4(B)). The best-performing models of
daily and nightly traffic volumes (tables S2 and S3)
showed that although 24 h traffic volume was 57%
less in winter than summer, shorter day lengths in
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Figure 3. As the snowpack deepened, moose generally moved to lower elevations, increasing the probability of road use. Top row:
a time-series of snow depth at 200 random locations at each study site, characterizing the yearly evolution of the snowpack. Black
lines denote the 0.2th and 0.8th quantiles. Middle row: results of a generalized additive model of seasonal changes in the elevation
of GPS-collared moose. The curves show the mean effects (i.e. excluding individual random effects). Bottom: seasonal changes in
the probability of road use by moose. In general, the probability of road-use was highest in winter when moose were at their
lowest elevations, but note the two peaks in road-use at Faro and Teslin. Because sites had different road densities and therefore
different baseline probabilities of road use, we present each of the bottom panels on different y-axis scales for visual clarity. Gray
boxes delineate the approximate snow season at each site.

Figure 4. Seasonal changes in the timing of moose-vehicle collisions and of traffic volume in Alaska. (A) Moose-vehicle collisions
were clustered in the hours before sunrise and after sunset. Contours and colors show model-estimated relative probabilities of
collision risk, and the thick black lines denote sunrise and sunset in Anchorage, Alaska. (B) Seasonal shifts in the timing of sunrise
and sunset cause changes in nighttime traffic, with ‘rush hour’ shifting to after sunset during winter. Pixel values represent hourly
traffic volumes averaged across all stations. (C) Total daily traffic volume declined during winter, but because of shorter day
lengths, there was an eight-fold increase in nighttime traffic. (D) Increasing 24 h snow accumulated was associated with a
reduction in traffic volume. Traffic volumes in D were scaled for each site individually, such that a one-unit change in traffic
volume represents a change of one standard deviation from a site’s mean. Confidence bands show the 95% confidence interval of
the mean effect (i.e. excluding site-level random effects).

winter caused an eight-fold increase in total night-
time traffic (figure 4(C)). The best-performingmodel
of winter traffic in response to snowfall (table S4)
revealed a negative effect of 24 h snow accumulation,
with a 10 cm snowfall causing traffic to decline by
∼28% (figure 4(D)).

3.3. Moose-vehicle collisions
Moose-vehicle collisions showed a cyclical, annual
spike during winter (figures 5(A) and (B)). Colli-
sions were 5.7 and 2.4 times more frequent during
winter than the low point in late spring in Alaska
and British Columbia, respectively (figure 5(B)).
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Figure 5.Moose-vehicle collisions increase during winter. Columns (A), (B): cyclical spike in moose-vehicle collisions during
winter in Alaska (blue) and British Columbia (red). Data points show the number of collisions recorded in each week of each year.
Column (C): the best-performing generalized additive conditional logistic regression of collision risk contained an interaction
between day of year and snow depth, which varied by region. This interaction revealed that the conditional probability of collision
is highest from December to February in snowpacks less than∼120 cm and was most pronounced in Alaska. Column (D): the
conditional probability of collision (±95% CI) declined with increasing amount of 48 h snowfall.

The best-performing case-control model (table S5)
contained an interaction between day of year and
snow depth. This interaction revealed that the con-
ditional probability of collision was highest during
December–February, but only when the surrounding
snowpack was shallower than∼100 cm (figure 5(C)).
Collisions were very unlikely when the surrounding
snowpack was deeper than 120 cm (figure 5(C)). The
low collision risk in very deep snow corresponds with
our finding that moose strongly avoid snow depths
greater than ∼100 cm (figure 2), resulting in the
highest collision risk in areas with shallow to moder-
ate snow depths (figure 5(C)). The best-performing
model also contained a negative effect of 48 h snow
accumulation on collision risk (figure 5(D)).

In Alaska, 82% of collisions occurred during the
night. The best-performing GAM of the timing of
collisions contained an interaction between hour and
day of year (table S6), revealing that collisions were
tightly clustered in the hours before sunrise and after
sunset (figure 4(A)). For example, in February rel-
ative collision probability was 16 times higher two
hours after sunset than two hours before sunset. This
crepuscular/nocturnal pattern of collisions tracked
seasonal changes in day length but was most pro-
nounced during autumn and winter (figure 3(A)),
when traffic volumes were highest in the crepuscular
period (figure 3(B)).

4. Discussion

Vehicle strikes have been estimated as the second
largest anthropogenic cause of large vertebrate mor-
tality (Collins and Kays 2011) and this threat is con-
tinuing to grow as human populations and road
networks expand (Laurance et al 2014). Understand-
ing the mechanisms that influence collision risk may

help managers tailor mitigation strategies to the most
relevant processes. Our analyses show that moose-
vehicle collisions in Alaska and British Columbia are
most common during winter (December–February)
but only in areas where the snowpack surrounding
the road was shallower than ∼100 cm. Multiple con-
current factors are implicated in this seasonal spike in
collisions. First, moose strongly avoided snow depths
>100 cm. This avoidance of deep snow correspon-
ded with migration from higher to lower elevations
where roads are more common, increasing the prob-
ability of road use and providing support for our
hypothesis that migration promotes road use. Second,
we found evidence (from the Fort McMurray region)
of increased road-use by moose during winter that
was unrelated to elevational migration. This suggests
that moose might preferentially travel on roads to
reduce energy expenditure, providing some support
for the hypothesis that plowed roads facilitate travel.
Third, collisions were tightly clustered in the hours
before sunrise and after sunset, when it is darker and
more difficult for drivers to see animals and when
moose are usually more active (Borowik et al 2021).
This pattern was strongest during winter when night-
time traffic volumes were highest due to shorter day
lengths, providing support for the hypothesis that
winter impairs driving conditions. Collectively, these
results indicate that coarse-scale elevational migra-
tion, fine-scale movement, and seasonal changes in
driving conditions act concurrently to culminate in
a spike in moose-vehicle collisions after dark during
winter.

Our winter impairs driving hypothesis posits
that moose-vehicle collisions might increase during
winter, as shorter day lengths cause more traffic to
occur at night, and as snowstorms make it more dif-
ficult for drivers to see animals and control vehicles.
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Two points of evidence indicate that nighttime traffic
plays a key role in higher collision rates during
winter. First, as day length shortened during winter,
peak traffic volumes shifted from before sunset to
after sunset (figure 4(B)). As in other regions, colli-
sions were tightly clustered in the hours before sun-
rise and after sunset (Haikonen and Summala 2001,
Huijser et al 2008, Borowik et al 2021, Cunningham
et al 2022), particularly during winter (figure 4(A)).
Second, winter day lengths are shorter in Alaska than
British Columbia, suggesting Alaska has a higher pro-
portion of nighttime traffic during winter. Consist-
ent with this pattern, the magnitude of the increase
in winter collisions was more than twice as large
in Alaska than British Columbia (figure 5). While
the larger magnitude of the peak during winter in
Alaska could be caused by other factors (e.g. cul-
ture, driving laws, collision reporting rules), the con-
centration of collisions at night in both regions,
coupled with longer night lengths in Alaska, sug-
gests that seasonal changes in nighttime traffic play
a key role in the observed increase in collision rates
during winter. In contrast, we found no support
for the second aspect of the winter impairs driving
hypothesis, with collision risk decreasing in response
to increasing 48 h snow accumulation (opposite
to our prediction). This negative relationship could
be caused partly by reduced traffic volumes during
snowstorms (figure 4(D)), and possibly more cau-
tious drivers. Collectively, our results strongly indic-
ate that increased nighttime traffic in winter causes
an increase in collision rates, but our results provide
no support that collisions increase during winter
as a direct result of snowstorms increasing driving
difficulty.

Movement through snow carries an exponential
metabolic cost as snow becomes deeper (Parker et al
1984), significantly impeding ungulate movement
when it reaches 50%–70% of chest height (Kelsall
1969, Fancy and White 1987). With chest heights of
78–85 cm, the preferential selection of snow depths
of ∼30 cm indicates that moose select habitat where
movement is relatively energetically efficient during
winter. This preference corresponds remarkably well
with earlier work showing that moose travel freely
through snow depths of 44 cm (Kelsall 1969) and fits
with an earlier management definition that a ‘severe
winter’ for moose is one in which snow depths exceed
80 cm (Coady 1974). The avoidance of deep snow
during winter, involving downhill migration, corres-
ponds with our finding that collisions were rare in
areas with very deep snow. This alignment between
two independent data sources—GPS-collared moose
and moose-vehicle collisions—reinforces the strong
effect of snow on animal movement (Mahoney et al
2018, Boelman et al 2019, Davidson et al 2020)
and highlights that snow properties can also medi-
ate human-wildlife conflict. These effects of snow

are likely to change into the future, as high latit-
udes, especially the Arctic, continue to warm at rates
far higher than the global average (Rantanen et al
2022). This warming will likely lead to regionally
variable changes in snow properties; for example,
our 40 yr SnowModel simulations showed that very
cold regions have likely experienced small increases in
annual snowfall (e.g. the Brooks Range; figure S3(C)),
whereas warmer coastal regions have experienced
substantial reductions in snowfall (figure S3(C)).
Snow onset is generally becoming later (figure S3(G)
and Liston and Hiemstra 2011) and snow-free dura-
tion is increasing in most regions (figure S3(H) and
Liston and Hiemstra 2011), leading us to speculat-
ively suggest that moose migrations in autumn may
get pushed later in the year, which could in turn affect
when moose are most concentrated around roads.

Our analysis of moose-vehicle collisions reveals
an annual cycle in which collisions predictably peak
each winter. Collisions follow predictable patterns for
other species and populations too. White-tailed deer
(O. virginianus), for example, have a defined peak
in collisions during the 2–3 week breeding season in
October/November (Huijser et al 2008, Cunningham
et al 2022). In Norway, snow-rich counties exper-
ienced substantial increases in moose-vehicle colli-
sions in years with deep snow, which was attributed
to migration causing an increase in moose density
near roadways (Rolandsen et al 2011). In contrast, in
snow-poor counties of Norway, moose-vehicle col-
lisions were unrelated to snowfall (Rolandsen et al
2011), indicating that other environmental processes
play a more dominant role. Likewise, moose-vehicle
collisions peaked in summer or autumn in other
regions where snow is typically shallower than our
sites, such as Maine (Danks and Porter 2010), New-
foundland (Joyce and Mahoney 2001), and Poland
(Borowik et al 2021). Snow is a dominant seasonal
feature of our five study sites, and our findings
demonstrate that it significantly affects moose move-
ment and therefore the locations in which moose-
vehicle collisions are most likely. These findings can
be used to infer seasonal changes in collision risk in
other areas of the species’ geographic range, espe-
cially mountainous areas of western North America
and northern Europe where deep seasonal snowpacks
are common.

While the controls over collision risk vary by spe-
cies and region because environmental context dic-
tates the controls on animal movement (Peters et al
2019, Jennewein et al 2020, Spitz et al 2020), the tem-
poral dynamics within a system are often predictable.
This predictability suggests that seasonal speed lim-
its, or even dynamic speed limits, could be effective
at reducing collisions. In California, dynamic daily
speed reductions for ships, based on daily maps of the
probability of whale presence in shipping lanes, are
more cost-effective than fixed seasonal speed limits
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(Hausner et al 2021). While mitigation infrastructure
(e.g. wildlife overpasses/underpasses) can be highly
effective at reducing collisions in specific locations
(Glista et al 2009, Huijser et al 2009), the strong sea-
sonal patterns revealed here suggest that mitigation
measures that address the temporal dimension of col-
lisions could produce additional benefits. In the case
of moose in Alaska and Canada, reduced nighttime
speed limits from December–February, could reduce
collision risk, especially if coupled with driver edu-
cation and lighting improvements (of roadways or
vehicles). As with most regulations, the key challenge
would lie in compliance: recent research shows that
seasonal speed limits are often ignored by drivers
(Riginos et al 2022), suggesting future studies could
investigate whether additional concurrent strategies
(e.g. enforcement and education) could improve
compliance.

While it is common for ungulates to migrate
to lower elevations during winter and follow green
waves back uphill in spring (Aikens et al 2017, Merkle
et al 2016), some moose in the Arctic and subarc-
tic instead migrate to higher elevations in winter,
where forage availability differs and where it can be
warmer because of temperature inversions (Mauer
1998, Cooley et al 2020). However, we generally
expect that our movement analyses are broadly rep-
resentative of the species’ typical seasonal movements
because our sample of moose spanned much of the
species’ latitudinal range, including diverse environ-
ments from the flat boreal forest of Alberta to above
the Arctic Circle in Alaska. In order to analyzemoose-
vehicle collisions and moose movements across such
a large area, the scale of our snow modeling (3 km
resolution) was coarse compared to the daily move-
ments of moose. As a result, our movement mod-
els were also coarse in scale. Future research could
derive snow properties at finer spatial scales, which
might reveal additional effects of fine-scale selection
for snow properties. For instance, other research has
shown fine-scale interactions between snow depth
and snow density, with Dall’s sheep (Ovis dalli dalli)
preferring shallow snow when it is soft but respond-
ing less to snow depth when it is firm (Mahoney et al
2018). In this paper, we focus on snow depth and
snow accumulation, but we note that the snow sim-
ulations produced a total of 15 variables (Liston et al
2022); figure S1) that may be of use for other ecolo-
gical applications.

WVCs are a leading anthropogenic cause of wild-
life mortality (Forman and Alexander 1998, Hill et al
2019) and the threat is growing globally as human
populations and road networks continue to expand
(Laurance et al 2014). Our findings show that snow,
daylight, wildlife movement, and traffic patterns play
important roles in seasonal spikes in moose-vehicle
collisions across Alaska and western Canada. Our res-
ults also reinforce the dominant effect of snow on
animalmovement (Mahoney et al 2018, Boelman et al

2019, Davidson et al 2020), with deep snow shift-
ing moose from higher to lower elevations where
roads are more common. This seasonal downhill
migration occurs at the time of year when nighttime
traffic volumes are highest and therefore when anim-
als are most vulnerable to collision. While the exact
moment of a collision is impossible to predict, our
results indicate that the general trend is predictable.
This predictability suggests that seasonal or dynamic
mitigation strategies could have substantial benefits
for reducing WVCs (if accompanied by compliance
measures), in turn preventing avoidable human and
animal injury or death.
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