
R E S E AR CH NOT E

Camera trap sampling protocols for open landscapes:
The value of time-lapse imagery

Scott Leorna | Todd Brinkman

University of Alaska Fairbanks, Institute
of Arctic Biology, Fairbanks, Alaska, USA

Correspondence
Scott Leorna, Institute of Arctic Biology,
University of Alaska Fairbanks, P.O. Box
757000 Fairbanks, AK 99775-7000, USA.
Email: sleorna@alaska.edu

Funding information
Office of Polar Programs, Arctic System
Science Program Award, Grant/Award
Number: 1839192

Abstract

Camera traps (CT) have been used to study a wide diversity of wildlife around

the world. However, despite their widespread use, standardized protocols are

lacking, potentially leading to reduced efficiency and inhibiting study compari-

sons, generalizability, and repeatability. While there are general guidelines

and considerations researchers should be aware of when designing a CT sur-

vey, studies have shown the vital importance of selecting sampling schemes

and camera settings tailored to specific characteristics of the wildlife system of

interest. For many species and regions, optimal sampling protocols have not

been thoroughly evaluated, especially in vast open landscapes. We used CT

data on barren-ground caribou (Rangifer tarandus) in the open landscape of

arctic Alaska as a case study to evaluate and quantify the influence of camera

trigger type (i.e., motion detection vs. time-lapse) and time-lapse interval on

data generation to inform sampling protocols for future CT research in this

system or others like it. Comparing camera trigger types, we found 5 min inter-

val time-lapse generated seven-times more images containing caribou com-

pared to motion detection. However, the detection rate of motion detection

was over 11-times greater than time-lapse resulting in more efficient data col-

lection with respect to camera battery life, data storage, and data processing

time. Exploring the effect of time-lapse interval length, we found detections

were highly sensitive to interval length with a 30 min interval producing 33.7%

fewer images containing caribou and identifying 22.2% fewer trap days con-

taining caribou compared to a 5 min interval. Our results provide insight into

effective CT sampling protocols for open landscapes and highlight the impor-

tance of critically evaluating and selecting camera settings that account for

characteristics of the study system to ensure adequate data is generated effi-

ciently to address study objectives.
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1 | INTRODUCTION

Camera traps (CT) have been used to gain insight into a
wide diversity of ecological systems and have become
a standard tool in wildlife ecology over the last few
decades (Burton et al., 2015; O'Connell et al., 2011;
Wearn & Glover-Kapfer, 2019). Despite growing volumes
of CT studies exploring animal ecology around the world,
relatively few studies have explicitly tested how different
camera settings influence data generation in particular
study systems. Most studies that have explored this topic
have focused on developing recommendations for the use
of motion detection camera settings (Apps &
Mcnutt, 2018; Palencia et al., 2022; Trolliet et al., 2014).
However, in systems where motion detection may be
ineffective (e.g., open landscapes), there remains a need
to identify and evaluate potential alternatives (Hamel
et al., 2013; Leorna & Brinkman, 2022; Pomezanski &
Bennett, 2018). This information gap has led to the lack
of standardized protocols for CT data collection, inhibit-
ing effective and efficient data collection, study compari-
sons, and study generalizability (Burton et al., 2015;
Hamel et al., 2013; Meek et al., 2014; Scotson
et al., 2017).

When determining which camera settings to use for a
wildlife study, generally the goal is to minimize “empty”
images (i.e., images not containing animals of interest)
and maximize detections (i.e., images containing animals
of interest). To do so, many guides to camera trapping
suggest to program camera settings with consideration of
several factors including project specific questions or
goals (e.g., species diversity/richness, occupancy, move-
ment), characteristics of targeted animal species
(e.g., size, behavior, density), environmental and habitat
characteristics (e.g., weather, vegetation, season), and
camera performance (e.g., detection range, sensitivity,
trigger speed) (Palencia et al., 2022; Rovero et al., 2013;
Wearn & Glover-Kapfer, 2017). Most modern CT provide
users options to adjust a number of settings including the
time of day when the camera is active (e.g., day vs night),
how cameras are triggered (e.g., time-lapse vs motion
detection), and how images are recorded (e.g., number of
images, duration between images, etc.) (Rovero
et al., 2013; Trolliet et al., 2014). Using CT sampling pro-
tocols tailored to landscape and species-specific condi-
tions can help ensure adequate data are collected to
address study objectives while maintaining an ideal bal-
ance of battery life, data storage, and processing time, all
of which can be significant limitations to CT studies
(Driessen et al., 2017; Glover-Kapfer et al., 2019; Hamel
et al., 2013; Palencia et al., 2022).

Open landscapes present several unique challenges
for monitoring wildlife using CTs. For example, while

motion detection sensors are often used to trigger images
of passing wildlife, they have a limited detection range
(i.e., distance between camera and animal) and can
underutilize the area in the camera's viewshed where ani-
mals can be seen in open landscapes (Leorna &
Brinkman, 2022). Also, motion sensor detection ranges
and trigger speeds have been documented to vary greatly
among CT makes and models, leading to challenges in
consistency and study replication (Driessen et al., 2017;
Trolliet et al., 2014). To combat these challenges, time-
lapse settings can be used which record images based on
a pre-defined time interval. However, because images are
triggered independently from animal presence, they can
result in a large number of “empty” images. Therefore,
the challenge of using time-lapse is to select an interval
that balances the tradeoffs of detecting the animal with
the resources spent on collecting, storing, and processing
the data (Hamel et al., 2013; Pomezanski &
Bennett, 2018). While there are pros and cons to each
trigger setting, some CTs allow simultaneous motion
detection and time-lapse recording, providing more ver-
satility in sampling protocols and data collection. How-
ever, not all CTs offer this functionality, highlighting the
importance of understanding which setting is most ideal
under different circumstances.

To inform CT sampling protocols in open landscapes,
we used CT data on barren-ground caribou (Rangifer tar-
andus) collected in the open landscape of Alaska's arctic
tundra as a case study and examined how image collec-
tion protocols influenced data generation. Our objectives
were to explore and quantify the influence of camera trig-
ger type (i.e., motion detection vs. time-lapse) and time-
lapse interval length (i.e., pre-defined time between
images) on the total volume of data generated, detection
rate of images collected (i.e., proportion of images con-
taining ≥1 caribou out of all images collected), and detec-
tion rate of trap days containing caribou (i.e., days
determined to contain ≥1 image of caribou based on
pooled data). Our study builds on a limited body of
research exploring the application of CTs for monitoring
a migratory species in open landscapes and contributes
empirical data to help CT users better understand the
impact of CT sampling protocols on data generation.

2 | METHODS

2.1 | Study area

CT data used in this study were collected on the arctic
coastal plain of Alaska, USA during Summer 2019
(Figure 1). This open landscape is dominated by arctic
tundra and low shrubs with flat topography near the
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coast of the Arctic Ocean which gradually becomes more
rolling further south in the foothills of the Brooks Range
(Walker et al., 2005). Generally, caribou herds move into
this area during the end of their northward spring migra-
tion to calve, spend the summer on the northern reaches
of the arctic coastal plain and other windswept areas, and
return south to their wintering grounds during fall
(Nicholson et al., 2016). In this region, there is 24 h day-
light from mid-May to the end of July.

2.2 | Camera settings

We used 20 Reconyx Hyperfire 2 HF2X CTs installed in a
systematic grid with sites separated by approximately
20 km (i.e., maximum day range of caribou during our
study period) which were active between May 2 and
September 4, 2019. Camera settings and recording sched-
ule included simultaneous 5 min interval time-lapse and
motion detection for a 24 h period. When cameras were
triggered by motion, 3 images were recorded with a 10 s
interval between images followed by a 30 s quiet period
during which additional motion would not trigger a new
image sequence. The motion sensor sensitivity was set to
“very high,” image aspect ratio to 4:3, image resolution to
3 MP (i.e., 2048 � 1440), battery type to lithium, and
“night mode” to “optimized” (i.e., 1/30s shutter speed
and max ISO of 3200 to balance blurred motion and
infrared illumination range) (Reconyx Inc., 2018). Cam-
eras were revisited at the beginning of July to swap mem-
ory cards and batteries.

2.3 | Image processing

We used a manual approach to detect and label images
with caribou using the software package TimeLapse2
(Version 2.2.3.6) (Greenberg et al., 2019). Images from
each site were viewed at up to 25 frames/s to detect sub-
tle changes between consecutive images. The default
value for each image was set to 0 (i.e., caribou absent)
and images where ≥1 caribou was detected were
recorded as 1 (i.e., caribou present). All images from each
site were first independently classified by at least two
reviewers followed by a final detailed review by an expe-
rienced reviewer who resolved discrepancies in initial
classifications to make the final determination of
whether an image contained caribou. Image metadata
included the trigger type (motion vs time-lapse), date,
and time.

2.4 | Data analysis

To examine the influence of camera trigger type and
time-lapse interval length, we compared subsets of data
generated by motion detection and time-lapse images
corresponding to interval lengths of 5, 10, 20, 30, 60, 120,
240, and 360 min, each starting at a time of 00:00
(i.e., midnight). For each data subset, we summarized the
total number of images recorded, the number of images
containing ≥1 caribou, and the number of trap days
when ≥1 image containing caribou was recorded within
a 24 h period. Using these values, for each subset, we

FIGURE 1 Study area (i.e., red

square, top right) where images were

collected and example of one camera

viewshed showing caribou captured

in the open landscape of arctic

Alaska, USA. For reference, this

image was triggered by motion

detection of the closest caribou on

the left of the image. Other caribou

further away were not within the

motion detection range of the

camera, however, they could be

captured using time-lapse camera

settings.
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calculated the caribou image detection rate (i.e., number
of images containing ≥1 caribou divided by the number
of images recorded within each camera setting), propor-
tion of caribou images (i.e., the number of images con-
taining ≥1 caribou within each camera setting divided by
the combined number of caribou images recorded by
both time-lapse and motion detection), and caribou trap
day detection rate (i.e., the number of trap days with ≥1
caribou image within each camera setting divided by the
combined number of caribou trap days recorded by both
time-lapse and motion detection).

Our goal for summarizing the raw data in different
ways was to provide a broad perspective on how image
collection protocols may influence different types of CT
analyses. Individual image detections of caribou were
used as this information is commonly used in relative
abundance indices and ultimately drives all other types
of CT analyses (Palmer et al., 2018). Trap days when cari-
bou were detected were used as this type of information
may be used in a wide variety of occupancy analyses
often used in CT studies (Burton et al., 2015). As the
characteristics and volume of data required to address
different study objectives vary greatly, our focus was to
determine the influence of CT sampling protocols on
overall data generation rather than estimation of specific
ecological metrics, as ultimately, this type of data can be
used to answer many different types of ecological ques-
tions (Burton et al., 2015; Sollmann, 2018).

3 | RESULTS

Combining all data among days and sites, there were a
total of 2403 trap days when cameras were active. Pooling

motion detection and 5 min interval time-lapse images, a
total of 692,122 images were recorded with 11,177
containing caribou accounting for 458 trap days when
caribou were present (Table 1). For camera trigger types,
5 min interval time-lapse accounted for 87.5% of the total
number of images containing caribou with an overall
detection rate of 1.4% (Table 1). Motion detection
accounted for the remaining 12.5% of caribou images
with an overall detection rate of 16.0% (Table 1). Of all
trap days when caribou were detected, 5 min interval
time-lapse accounted for 94.3% and motion detection for
33.6% (Table 1). For increased time-lapse interval lengths
of 10, 20, 30, 60, 120, 240, and 360 min, the proportion of
caribou images captured by time-lapse decreased to
77.7%, 63.6%, 53.8%, 37.2%, 23.0%, 13.0%, and 9.5%,
respectively, and the trap day detection rate decreased to
86.0%, 79.5%, 72.1%, 59.8%, 45.4%, 31.9%, and 26.9%,
respectively (Figure 2, Table 1).

4 | DISCUSSION

Using an empirical dataset of caribou CT observations in
arctic Alaska, we gained valuable insight to inform CT
sampling protocols for open landscapes. By comparing
images collected by time-lapse and motion detection set-
tings, we found 5 min interval time-lapse contributed
seven-times more images containing caribou accounting
for almost three-times more caribou trap days compared
to motion detection (Table 1). These findings are
explained by time-lapse images being able to capture cari-
bou at greater distances in open landscapes than the
effective range of the camera's motion detection sensor,
ultimately increasing the overall area sampled in the

TABLE 1 Summary of images captured by time-lapse and motion detection camera settings.

Time-lapse interval length (min)
Motion
detection5 10 20 30 60 120 240 360

Images recorded 683,402 341,706 170,854 113,902 56,951 28,478 14,242 9491 8720

Images ≥1 caribou 9783 4862 2436 1624 824 417 209 146 1394

Trap days ≥1 cariboua 432 394 364 330 274 208 146 123 154

Image detection rateb 1.4% 1.4% 1.4% 1.4% 1.4% 1.5% 1.5% 1.5% 16.0%

Proportion of Caribou Imagesc 87.5% 77.7% 63.6% 53.8% 37.2% 23.0% 13.0% 9.5% 12.5%5

Trap day detection rated 94.3% 86.0% 79.5% 72.1% 59.8% 45.4% 31.9% 26.9% 33.6%

aTrap day ≥1 caribou includes all days when ≥1 image was recorded within a 24 h period which was determined to contain ≥1 caribou.
bImage detection rate was calculated by dividing the number of images containing ≥1 caribou by the number of images recorded within each camera setting.
cProportion of caribou images was calculated by dividing the number of images containing ≥1 caribou within each camera setting by the combined number of
images containing ≥1 caribou recorded by the corresponding time-lapse interval and motion detection.
dTrap day detection rate was calculated by dividing the number of trap days with ≥1 caribou within each camera setting by the total number of trap days ≥1
caribou (n = 458).
5Value calculated from pooling all motion detection and 5 min interval time-lapse images containing caribou.
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camera's viewshed (Leorna & Brinkman, 2022). The sig-
nificant increase in detections using time-lapse images
enhances opportunities for, and the statistical power of,
many common CT analysis techniques (Sollmann, 2018).
Therefore, these results highlight the potential added
value of using time-lapse settings in open landscapes.

While short interval time-lapse generated a greater
number of caribou detections overall, the image detection
rate was over 11-times greater for motion detection com-
pared to time-lapse (Table 1). This result is intuitive as
motion detection relies on the animal being present to
trigger the camera to record an image. In contrast, time-
lapse images are recorded independent of animal pres-
ence which is supported by caribou image detection rates
remaining relatively constant for time-lapse images
regardless of interval length (Table 1). We found to
generate approximately the same number of images con-
taining caribou as motion detection required a 30 min
time-lapse interval which produced about 13-times the
total volume of data (i.e., total images recorded) com-
pared to motion detection (Table 1). Additionally, to gen-
erate approximately the same number of trap days
containing caribou as were determined using motion
detection required a 240 min time-lapse interval which
produced about 1.6-times the total volume of data com-
pared to motion detection (Table 1). These findings sug-
gest motion detection may be more efficient (i.e., yield a
higher proportion of detections to non-detections) at the
expense of being less informative (i.e., generating fewer
overall detections and trap days containing caribou) and
provide valuable insight into thresholds at which time-
lapse and motion detection settings result in comparable
data collection.

By examining the effect of time-lapse interval length
on data generation, we found increases in interval
length had a dramatic effect on the proportion of caribou
images and caribou trap day detection rate (Figure 2).
For example, increasing the time-lapse interval length
from 5 min to 30 min decreased the proportion of caribou
images and number of trap days determined to contain
caribou by 33.7% and 22.2%, respectively (Table 1). These
results align with similar studies in different systems and
highlight the importance of selecting time-lapse intervals
in consideration of landscape and species-specific study
conditions (Hamel et al., 2013; Pomezanski &
Bennett, 2018). Collectively, our results demonstrate
some of the tradeoffs of using motion detection compared
to time-lapse settings and how the choice of camera trig-
ger type and time-lapse interval length can have a sub-
stantial impact on the data available to inform study
objectives. While this study represents one of few that
has explicitly evaluated the influence of time-lapse inter-
val length on animal detections, we note our evaluation

focused on only one species and landscape type, and fur-
ther research is needed to better understand how study
system characteristics influence the optimal time-lapse
interval length.

4.1 | Implications and considerations

One possible concern about using time-lapse is the abun-
dance of “empty” images due to the low detection rate
and the resulting processing time required to sort out
empty images from non-empty images. For example, in
our system, we found using time-lapse generated on aver-
age about one image of caribou per 70 images captured
compared to one-in-six using motion detection (Table 1).
Fortunately, tools and techniques that utilize machine
learning and computer vision have become more widely
available which can quickly automate image labeling
with minimal effort and help expedite CT data processing
to some extent (Tuia et al., 2022; Vélez et al., 2023; Young
et al., 2018). Other concerns related to the low detection
rate of time-lapse may be limited data storage and battery
life compared to the higher detection rate of motion
detection. During our mid-season memory card and bat-
tery swap, we found most memory cards only held about
3GB of data (approximately 18,000 images) accounting

FIGURE 2 Influence of time-lapse interval length on the

proportion of images and trap days determined to contain ≥1
caribou. Proportion of caribou images was calculated by dividing

the number of images containing ≥1 caribou within each camera

setting by the combined number of images containing ≥1 caribou
recorded by the corresponding time-lapse interval and motion

detection. Trap day detection rate was calculated by dividing the

number of trap days with ≥1 caribou within each camera setting by

the total number of trap days ≥1 caribou (n = 458).
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for <1% of the maximum 512GB card size supported by
our cameras. Also, most cameras showed “full” battery,
indicating our cameras would have likely remained oper-
ational for the full four-month sampling period despite
our intensive 5 min interval time-lapse and motion
detection sampling. However, for especially demanding
applications, modern CTs also offer new features such as
real-time image filtering and wireless data transfer via
satellite reducing the need for on-board data storage, and
auxiliary battery life can be supplied by solar panels or
external battery packs (Glover-Kapfer et al., 2019;
Meek & Pittet, 2012; Nazir et al., 2017). Additional bene-
fits of using time-lapse include standardizing sampling
effort across sites and studies, avoiding technical issues
related to false-triggers or differences in motion sensor
performance, better planning for battery life, data stor-
age, and image processing time as the total volume of
data to be collected would be known prior to data collec-
tion, and opportunities to apply newly developed analyti-
cal approaches for estimating abundance and density of
unmarked animals which require time-lapse images
(Gilbert et al., 2020; Moeller et al., 2018).

Having a thorough understanding of how camera set-
tings influence data generation is essential to making
informed decisions about CT study design to fully opti-
mize available resources and generate sufficient data to
appropriately address study objectives. Ultimately, based
on our results, we found utilizing short interval
time-lapse offered many benefits compared to motion
detection in our open landscape and techniques and tech-
nology offer feasible solutions to many associated con-
cerns or limitations (Glover-Kapfer et al., 2019; Thomson
et al., 2018). Therefore, in cases where targeted animals
can be seen beyond the camera's motion detection sensor
range, utilizing time-lapse can expand the effective area
sampled in the camera's viewshed and contribute animal
detections that would have otherwise been missed. While
there are many project specific aspects to designing effec-
tive and efficient CT studies researchers must carefully
consider, our study provides a practical example of how
selection of camera settings can substantially influence
data generated to inform study objectives.
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