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Human vs. machine: Detecting wildlife in camera trap images 
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A B S T R A C T   

As the capacity to collect and store large amounts of data expands, identifying and evaluating strategies to 
efficiently convert raw data into meaningful information is increasingly necessary. Across disciplines, this data 
processing task has become a significant challenge, delaying progress and actionable insights. In ecology, the 
growing use of camera traps (i.e., remotely triggered cameras) to collect information on wildlife has led to an 
enormous volume of raw data (i.e., images) in need of review and annotation. To expedite camera trap image 
processing, many have turned to the field of artificial intelligence (AI) and use machine learning models to 
automate tasks such as detecting and classifying wildlife in images. To contribute understanding of the utility of 
AI tools for processing wildlife camera trap images, we evaluated the performance of a state-of-the-art computer 
vision model developed by Microsoft AI for Earth named MegaDetector using data from an ongoing camera trap 
study in Arctic Alaska, USA. Compared to image labels determined by manual human review, we found Meg-
aDetector reliably determined the presence or absence of wildlife in images generated by motion detection 
camera settings (≥94.6% accuracy), however, performance was substantially poorer for images collected with 
time-lapse camera settings (≤61.6% accuracy). By examining time-lapse images where MegaDetector failed to 
detect wildlife, we gained practical insights into animal size and distance detection limits and discuss how those 
may impact the performance of MegaDetector in other systems. We anticipate our findings will stimulate critical 
thinking about the tradeoffs of using automated AI tools or manual human review to process camera trap images 
and help to inform effective implementation of study designs.   

1. Introduction 

Advancements of tools and technology for generating information 
have led to the collection and storage of massive expanses of data that 
can quickly become unwieldy to handle using traditional analytical 
methods. Often referred to as “Big Data”, these datasets are rapidly 
generated resulting in high volumes of stored data that needs to be 
processed to extract pertinent information (Chen et al., 2014; Fosso 
Wamba et al., 2015; Hariri et al., 2019). When the rate of data pro-
duction exceeds analytical capacity, this causes a backlog or lag between 
data collection and use of those data to draw meaningful insights and 
conclusions. This imbalance between data collection and processing 
capacity is a common characteristic associated with Big Data and has 
become a significant challenge in the production of knowledge for many 
disciplines (Fosso Wamba et al., 2015; Philip Chen and Zhang, 2014). In 
ecology, a rapidly evolving technology and widely applied tool that has 
generated Big Data is the use of camera traps (i.e., remotely triggered 
cameras) to non-invasively survey wildlife (Burton et al., 2015; Farley 

et al., 2018; Glover-kapfer et al., 2019; Rowcliffe and Carbone, 2008; 
Trolliet et al., 2014). Today's camera traps are relatively simple to use 
and affordable and boast long battery life and immense data storage 
capacity. As the use of camera traps and their capacity to generate Big 
Data increases, so does the need for efficient and effective ways to 
process the data (Farley et al., 2018; Thomson et al., 2018; Young et al., 
2018). 

In the context of wildlife camera trapping, the two most basic data 
processing tasks are to determine whether (and in some cases where) an 
animal is present in an image (i.e., object detection) and to assign labels 
to detected animals (i.e., object classification) (Norouzzadeh et al., 
2018; S. Schneider et al., 2018). These pieces of information are often 
used in assessments of species richness, diversity, distribution, abun-
dance, behavior, and more (Burton et al., 2015; Caravaggi et al., 2017; 
Sollmann, 2018; Wearn and Glover-kapfer, 2017). Though seemingly 
simple and straightforward, these tasks can be daunting for individual 
researchers to undertake themselves as camera trap studies often deploy 
dozens of cameras and can quickly generate thousands to millions of 
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images that need to be reviewed and analyzed (Norouzzadeh et al., 
2018; Swanson et al., 2015). These data processing tasks often represent 
a significant bottleneck in the research process from the collection of 
images to having useful information to answer research questions. In 
response to this challenge, many have turned to the field of artificial 
intelligence (AI) to build computer vision models that leverage machine 
learning to help automate these data processing tasks (Christin et al., 
2019; Miao et al., 2019; Norouzzadeh et al., 2018; S. Schneider et al., 
2018; Tabak et al., 2019; Thomson et al., 2018; Tuia et al., 2022; Vélez 
et al., 2022). With rapid adoption and advancement of automated 
methods, the time-consuming burden of manually reviewing and la-
beling images has been significantly reduced, ultimately reducing the 
lag between data collection and application and alleviating some of the 
Big Data challenges associated with wildlife camera trap data (Farley 
et al., 2018). However, as new computer vision models are developed 
and become more accessible, having a thorough understanding of their 
strengths and limitations is imperative to inform wise decisions for their 
use in project workflows (Greenberg, 2020a; Vélez et al., 2022; Young 
et al., 2018). Frequent and critical evaluations of model performance 
can help contribute to this understanding, however, outcomes are 
largely dependent on the availability and variety of well-labeled (e.g., 
accurate, precise, representative) image sets to verify the accuracy of 
model output and the level of scrutiny manual human reviewers put into 
identifying wildlife in images (Greenberg, 2020a). 

To create a computer vision model for automatically detecting 
wildlife in camera trap images, typically a subset of data is processed by 
manual human review to generate a “training” dataset which is then 
used to train computer algorithms and build a model. Once a model has 
been developed, it is then applied to unseen raw data (i.e., “test” dataset) 
and its performance is evaluated by comparing its predictions with the 
intended outcomes. This process of training and testing a model is often 
iterative and can be used to refine a model's performance as additional 
training data become available and new insights are gained from model 
evaluations (Christin et al., 2019; Norouzzadeh et al., 2018). How well a 
model performs is dependent on the characteristics of the data the model 
is confronted with and the associated challenges they present (Green-
berg, 2020a; S. Schneider et al., 2020). For example, a model would be 
expected to perform better with an image set where wildlife were 
consistently captured near the camera and clearly visible in images 
compared to if they were generally further from the camera and difficult 
to see in images. As the vast majority of camera trap studies use a 
camera's passive infrared (PIR) motion detection sensor to trigger the 
camera to record an image, the resulting data used to train and evaluate 
automated models largely consist of wildlife restricted to the camera's 
motion detection sensor range (typically ≤30 m for large animals under 
ideal conditions) (Apps and Mcnutt, 2018; Beery et al., 2018; Driessen 
et al., 2017; Norouzzadeh et al., 2018, 2021; S. Schneider et al., 2018, 
2020; Swanson et al., 2015; Trolliet et al., 2014). This leaves some un-
certainty about how well automated models may perform at detecting 
wildlife beyond the camera motion detection sensor range (e.g., in im-
ages captured using time-lapse camera settings which record images at 
preset time intervals where animals can be captured anywhere in the 
camera's viewshed). 

When image sets generated by motion detection are used to assess 
the performance of an automated object detection model, the task being 
evaluated is essentially how well the model can detect wildlife that were 
detected by the camera's motion detection sensor. However, the ques-
tion of a model's performance is often intended to relate to how well an 
automated model can detect wildlife in an image that could have been 
detected by manual human review. The nuances between this actual and 
intended evaluation are particularly important for camera trap studies 
conducted in landscapes where targeted animals can be seen beyond the 
camera's motion detection range or in cases where targeted animals are 
unlikely to trigger the camera's PIR motion detection sensor (e.g., very 
small or well-insulated animals) (Meek et al., 2014; Rovero et al., 2013). 
In such cases, time-lapse settings may expand the area sampled at each 

camera site and/or capture animals that would not have otherwise been 
detected (Hamel et al., 2013). The extent to which time-lapse triggered 
images may be beneficial is dependent on how well the method used to 
process images can reliably detect wildlife beyond the motion detection 
range of the camera. Therefore, critically evaluating a computer vision 
object detection model using a rigorously curated image set generated 
by both motion detection and time-lapse camera settings (i.e., where 
animals are assumed to be randomly distributed in the viewshed rather 
than biased toward the camera) may lead to novel insights into how well 
automated models perform compared to manual human review and 
inform practical decisions about the most efficient and effective way to 
process camera trap images for specific study conditions. 

Many automated image processing models have been developed to 
address specific computer vision challenges under a specific set of cir-
cumstances or conditions, however, these models often do not perform 
well in broader applications (Thomson et al., 2018). For example, a 
model developed specifically to detect birds would likely not perform 
well at identifying large mammals (Beery et al., 2019; S. Schneider et al., 
2020). With this in mind, Microsoft AI for Earth set out to develop a 
universal image processing model focused on object detection that 
would perform well with camera trap images of wildlife from around the 
world in a variety of ecosystems; the result of this effort was the creation 
of a state-of-the-art computer vision model named MegaDetector V4.1 
(Beery et al., 2019; Microsoft and for Earth., 2020). MegaDetector uses a 
two-stage process known as a Faster Region-based Convolutional Neural 
Network (Faster R-CNN) which first seeks to identify all regions in an 
image that contain an object and then examines attributes of those 
specific regions to assign objects to a particular class (Ren et al., 2015). 
In other words, the model first searches the image to determine areas 
that contain an object not part of the background scene and draws 
bounding boxes around those objects. Then, each object is reviewed and 
assigned an object classification and confidence value indicating the 
model's confidence in the selected object class. MegaDetector has been 
trained using hundreds of thousands of images labeled by manual 
human review from a wide variety of ecosystems and classifies objects as 
either an animal (any non-human animal), human (any person), or truck 
(any vehicle) (Beery et al., 2019; Microsoft and for Earth., 2020). This 
two-step process of Faster R-CNNs leads to slower processing speeds 
compared to other single-step methods, however, they have been shown 
to result in greater accuracy in detecting objects in complex images 
(Huang et al., 2017; S. Schneider et al., 2018; Vecvanags et al., 2022). To 
facilitate visualization of MegaDetector's output (i.e., bounding-boxes 
around detected objects with class labels and confidence values), it 
has been integrated with software developed for manually processing 
camera trap images such as TimeLapse2 (Greenberg et al., 2019) which 
allows users to visually inspect MegaDetector's results for each image 
and organize the dataset according to various attributes from Mega-
Detector's output. For example, within TimeLapse2, users can organize 
images based on MegaDetector's confidence thresholds for labeled ob-
jects or their classes (e.g., select images where MegaDetector detected an 
animal with a confidence value > 75%) which can then be easily 
reviewed and further manually annotated with additional relevant in-
formation (e.g., species, behavior, count, etc.) (Greenberg, 2020a; Vélez 
et al., 2022). The generalizability of MegaDetector and its integration 
with existing software to manually review model results familiar to 
many camera trap researchers provides a streamlined and adaptable 
workflow that facilitates the transition between automated and manual 
image processing and allows manual human reviewers to make correc-
tions to image labels and/or add supplemental annotations to images to 
address specific study objectives. Additionally, there are few “off-the- 
shelf” computer vision models that are readily available that can be 
applied to any camera trap project by ecologists with limited computer 
science or coding skills. These qualities of MegaDetector make it an 
appealing option for a wide diversity of camera trap projects and its use 
and popularity has been growing around the world (Microsoft and for 
Earth., 2020). 
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To gain a greater understanding of how automated AI tools can 
contribute to Big Data challenges associated with wildlife camera trap 
projects, we evaluated performance of Microsoft AI for Earth's Mega-
Detector (V4.1) using camera trap images generated by both motion 
detection and time-lapse camera settings from an ongoing wildlife study 
in Arctic Alaska, USA. We decided to focus our study on MegaDetector 
because it was specifically developed with wildlife camera trapping in 
mind, is freely available and accompanied with excellent documentation 
and supporting information facilitating its ease of use and accessibility, 
and because developers were eager to help with running the model, 
interpreting results, and interested in understanding how the model was 
being used by wildlife camera trapping projects and how it could be 
improved for end-users (Microsoft and for Earth., 2020). Our main ob-
jectives were to 1) compare the performance of manual human review 
and MegaDetector for detecting wildlife in camera trap images by 
evaluating the proportion of motion detection and time-lapse images 
correctly labeled with animal presence or absence by each image pro-
cessing method and 2) identify the minimum detection size (i.e., 
smallest pixel area occupied by an animal in the image) and maximum 
detection distance (i.e., furthest distance between the camera and ani-
mal) at which each camera trigger type (i.e., motion detection and time- 
lapse) and image processing method failed to reliably detect wildlife (i. 
e., detection limits). We discuss the implications of our findings in terms 
of the maximum area sampled in the camera's viewshed (i.e., area where 
animals can be detected). We anticipated wildlife captured in motion 
detection triggered images would generally be larger and/or closer to 
the camera (i.e., easier to detect and identify in images) compared to 
those in time-lapse triggered images and that manual human review 
would detect and identify smaller objects and/or objects further from 
the camera (i.e., represented by animals occupying a smaller pixel area 
in the image) compared to MegaDetector. Consequently, we expected 
fewer discrepancies in images labeled with/without animals (i.e., com-
parable performance) between manual human review and Mega-
Detector for motion detection triggered images compared to time-lapse 
triggered images. Based on our findings, we provide considerations for 
selecting an image processing method to balance efficiency and accu-
racy for various camera trapping project needs. Our findings and manual 
human-reviewed dataset may also be used to inform and improve future 
development of computer vision models for automated image analysis. 

2. Methods 

2.1. Study area 

We used images from an ongoing camera trap project (2019–2023) 
in Arctic Alaska, USA with a particular emphasis on barren-ground 
caribou (Rangifer tarandus). Images from this ecosystem provide useful 
characteristics to evaluate the performance of MegaDetector under ideal 
conditions for several reasons. First, the open landscape of Alaska's 
Arctic tundra has limited tall vegetation (e.g., treeless) and relatively flat 
topography. Therefore, the camera's viewshed and the distance at which 
animals can be seen is well beyond the motion detection range of the 
camera, maximizing the potential for time-lapse images to record 
additional detections and provide novel insights (e.g., identifying min-
imum detection size, maximum detection distance). Second, the back-
ground scene is generally uniform which is ideal for detecting objects 
using both automated models and manual human review. Third, there is 
a relatively low diversity of wildlife species, most of which have physical 
characteristics similar to those which are well represented in Mega-
Detector's training data (e.g., large mammals). Fourth, species most 
likely to be captured in images have distinctive morphological and 
behavioral characteristics which can be used by manual human re-
viewers to help determine the correct identity of objects. For example, it 
is very uncommon in this region to observe large mammals form groups 
larger than ~10 individuals other than caribou. These characteristics are 
useful because they enhance our ability and confidence in manually 

detecting and correctly labeling wildlife, providing a rigorous dataset for 
ground-truthing which may allow us to identify MegaDetector's detec-
tion limits for various wildlife under optimal conditions and help 
establish realistic expectations for automated image processing of 
wildlife camera trap images. 

2.2. Image collection 

We used Reconyx HyperFire 2 HF2X camera traps which were 
mounted ~1 m above the ground and recorded images with a 2048 ×
1440 pixel resolution. Cameras recorded 5 min interval time-lapse im-
ages during a 24 h period and a 3-image sequence when motion- 
triggered with 10s between images and a 30s quiet period. Motion 
sensitivity was set to very high. We selected images from 20 sampling 
sites during a 24 h period when each site experienced relatively high 
animal activity (≥288 images/site/day) to represent variation in camera 
placement and background and capture a wide diversity of animal 
characteristics while maintaining a sufficient and manageable dataset 
for comparison. The time period from which data were used spanned 
from May 2019, when the landscape was largely snow-covered and 
melting, to the beginning of September 2019, when the landscape was 
snow-free and temperatures were returning to freezing. 

2.3. Image processing 

To facilitate direct comparison between image processing methods, 
the same image set was used for both manual human review and auto-
mated processing, and all images were processed independently before 
results were reviewed (i.e., each processing method was blind to the 
results of the other). We restricted our analysis and discussion to Meg-
aDetector's performance in only the animal class (i.e., objects labeled by 
MegaDetector as either “person” or “truck” were not considered). Also, 
our evaluation focused on the most common first step for camera trap 
image processing which is to separate images containing animals of 
interest (detections) from images without (non-detections; commonly 
referred to as “empty”). Therefore, with each processing method, each 
image received a binary label of either a 1 (indicating ≥1 animal 
detected) or 0 (indicating no animals detected). 

To manually label images, we used a two-stage human review pro-
cess using the free software TimeLapse2 v2.2.3.6 (Greenberg, 2020b; 
Greenberg et al., 2019). First, all images were reviewed and manually 
labeled independently by three trained human reviewers. Images were 
played at rapid frame rates (up to 15 frames/s) to detect subtle changes 
between consecutive images. When objects were detected, they were 
carefully reviewed and assigned to one of the following classes: caribou, 
bird (Aves spp.), microtine (Arvicolinae spp.), ground squirrel (Uroci-
tellus parryii), or fox (Vulpes vulpes). Second, labeled datasets from all 
reviewers were combined and discrepancies in image labels were given a 
secondary detailed review to make a final determination. The zoom 
function in TimeLapse2 was often used when carefully inspecting im-
ages and when toggling between consecutive images. The image trigger 
type (motion detection or time-lapse) was extracted from image file 
metadata using TimeLapse2 and assigned to each image in the dataset 
(Greenberg et al., 2019). 

For automated image labeling, we provided our image set to the 
Microsoft AI for Earth Team who ran the images through MegaDetector 
and returned to us an image recognition file that specified Mega-
Detector's output for each image. Through the integration of Mega-
Detector with TimeLapse2, we uploaded the image recognition file and 
visually reviewed MegaDetector's results for each image which con-
tained bounding boxes around detected objects with class labels and 
confidence values (Greenberg, 2022). We did not make any corrections 
to MegaDetector's labels and no specific optimization or customization 
was made specifically for this image set. The resulting labeled dataset 
was therefore the initial raw output from MegaDetector. The intent of 
this was to provide an honest and unbiased perspective on how 
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MegaDetector performed compared to manual human review and 
describe possible advantages and disadvantages of using readily avail-
able automated image processing tools. 

2.4. Data analysis 

With labels from manual human review as a reference, we deter-
mined true positives (TP; ≥1 of MegaDetector's bounding boxes was 
confirmed to contain an animal), true negatives (TN; neither Mega-
Detector nor manual human review detected any animals), false posi-
tives (FP; MegaDetector labeled ≥1 object in an image which was 
determined to have no animals present by manual human review), and 
false negatives (FN; MegaDetector labeled an image as empty which was 
confirmed to contain ≥1 animal by manual human review) (Fig. 1). In 
addition, we determined false-true positives (FTP) which were cases 
when MegaDetector's bounding-box(s) around a detected animal(s) did 
not contain an animal(s), however, an animal(s) was found elsewhere in 
the image from manual human review (Fig. 1). FTP were combined with 
FP for analysis. 

As objects labeled by MegaDetector are influenced by the object 
detection threshold used (i.e., value indicating the model's confidence in 
the assigned label), we included thresholds of > 0%, ≥ 25%, ≥ 50%, and 
≥ 75% to provide a broader perspective on how this can influence 

performance results. To ensure labels determined from manual human 
review served as a quality “truth” reference, we visually reviewed all 
images (i.e., TP, TN, FP, FTP, and FN) from MegaDetector's > 0% con-
fidence threshold (i.e., greatest number of objects labeled) with a 
particular focus on FP and FN since we wanted to ensure manual human 
reviewers did not miss any relevant objects in images or incorrectly label 
objects. 

To examine how image sets generated by motion detection or time- 
lapse camera trigger settings influenced the performance of Mega-
Detector compared to manual human review at detecting wildlife in 
camera trap images (Obj. 1), we separated motion-triggered images 
from time-lapse images and report performance metrics on these sepa-
rately. To describe the detection limits of wildlife for each trigger type 
and image processing method (Obj. 2), we chose a subset of images 
where animals were at distances corresponding to the maximum camera 
motion detection range, maximum MegaDetector detection range, and 
maximum manual human reviewer detection range and measured their 
pixel area (i.e., minimum detection size) using the free software ImageJ 
(C. A. Schneider et al., 2012). We felt using the pixel size of objects 
would be the most broadly applicable and generalizable metric for 
describing detection size limits because we assumed large objects far 
away and small objects closer to the camera would be comparably 
difficult to identify when they occupied the same number of pixels in an 

Fig. 1. Example of final image results determined by comparing animal labels from Microsoft AI for Earth's MegaDetector (i.e., blue bounding boxes) with animal 
labels from manual human reviewers (i.e., yellow dots) as a truth reference. Animals shown here are caribou from Arctic Alaska. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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image. For example, we thought identifying a 50-pixel small bird rela-
tively nearby would likely be as challenging as identifying a 50-pixel 
large mammal relatively further away, provided the model was 
adequately trained on both objects. To estimate the maximum detection 
distance, we used information available on the captured animals' mor-
phometrics (e.g., nose-to-tail length) and the corresponding apparent 
size of selected morphometrics in the image (i.e., pixel length measured 
using ImageJ) to estimate the distance between the camera and the 
animal using a photogrammetric technique described by Leorna et al. 
(2022). Then, using the maximum detection distance and the angular 
field of view of the camera (i.e., approximately 37.7 degrees for the 
Reconyx HF2X), we approximated the area sampled in the camera 
viewshed by each camera trigger type and image processing method 
using the equation for the area of a circle sector (i.e., area sampled =
(maximum detection distance 2 X angular field of view of camera)/2). 

3. Results 

A total of 6224 images were included in the analysis (7.5% motion- 
triggered, 92.5% time-lapse) with 2862 images (46.0% of total) deter-
mined by manual human review as containing ≥ 1 animal (13.6% 
motion-triggered, 86.4% time-lapse) and 3362 images (54.0% of total) 
determined to not contain any animals (2.3% motion-triggered, 97.7% 
time-lapse) (Table 1). The proportion of images from each camera 
trigger type determined by manual human review as containing ≥ 1 
animal was 83.7% for motion detection images and 42.9% for time-lapse 
images (Table 1). For motion detection images where animals were 
detected, caribou were in 99.5% and birds in 2.3% of images. For time- 
lapse triggered images where animals were detected, caribou were in 
83.6% and birds in 18.1% of images, and < 1.0% of images contained 
microtines, ground squirrels, or fox (Table 1). Examining FP and FN 
from the > 0% MegaDetector confidence threshold, we did not find any 
images where manual human review missed an animal or determined an 
animal to be present which was absent. Therefore, we were confident 
that our manual human review process provided a quality truth refer-
ence for evaluating MegaDetector's object detection performance. 

3.1. Manual human review vs. MegaDetector (Obj. 1) 

For images recorded by the camera motion detection sensor, Mega-
Detector correctly labeled (i.e., TP + TN) between 94.6% (at the > 0% 
detection threshold) and 95.7% (at the ≥ 75% detection threshold) of 
images (Fig. 2). For images recorded by the time-lapse trigger setting, 
MegaDetector correctly labeled between 55.7% (at the > 0% detection 
threshold) and 61.6% (at the ≥ 75% detection threshold) of images 

(Fig. 2). Adjusting MegaDetector's object detection threshold resulted in 
a relatively small improvement for motion detection images compared 
to time-lapse triggered images (i.e., 1.1% and 5.9% increase in correctly 
labeled images, respectively) (Fig. 2). A summary of all class labels (e.g., 
TP, TN, FP, FTP, and FN) determined by comparing MegaDetector's 
predictions with labels from manual human review is presented in 
Table A1. Additionally, a summary of common performance metrics 
often used to describe computer vision model performance (e.g., recall, 
precision, F1, Matthews Correlation Coefficient, etc.) is presented in 
Appendix Table A2. 

3.2. Detection size and distance limits (Obj. 2) 

Caribou were the only species with a sufficient sample to confidently 
identify the minimum detection pixel size (i.e., the minimum area in the 
image the animal must occupy to be detected) for the camera motion 
detection sensor, MegaDetector, and manual human reviewers. By 
examining images where animals were distributed at different distances 
from the camera, we found the minimum detection size limit of caribou 
was approximately 600px for the camera motion detector sensor, 60px 
for MegaDetector at the > 0% confidence threshold, and 4px for manual 
human reviewers (Fig. 3). We estimated the maximum detection dis-
tance for caribou was approximately 29 m for the camera motion 
detection sensor, 222 m for MegaDetector with the > 0% confidence 
threshold, and 2551 m for manual human reviewers (Fig. 4). Based on 
the angular field of view of the camera, these maximum detection dis-
tances correspond with the maximum area sampled for caribou of 273 
m2 for the camera motion detection sensor, 16,194 m2 for MegaDetector 
with the > 0% confidence threshold, and 2,141,651 m2 (2.14 km2) for 
manual human reviewers (Fig. 4). 

4. Discussion 

We found Microsoft AI for Earth's computer vision model Mega-
Detector performed exceptionally well compared to manual human re-
view (94.6% and 95.7% correctly labeled images at the > 0% and ≥ 75% 
detection thresholds, respectively) at detecting wildlife in images 
collected by the camera motion detection setting without any custom-
ization of the model or modifications to initial labels (Fig. 2). This 
finding is consistent with other evaluations of MegaDetector's perfor-
mance in a variety of study systems (Fennell et al., 2022; Vélez et al., 
2022). We identified the minimum detection size limit for MegaDetector 
was approximately ten times smaller than for the camera motion 
detection sensor (i.e., 60px for MegaDetector at the > 0% confidence 
threshold and 600px for the camera motion detector sensor) (Fig. 3), 
resulting in the maximum detection distance and area sampled by 
MegaDetector being eight and 59 times greater, respectively, compared 
to the camera motion detection sensor (Fig. 4). These results suggest that 
MegaDetector is likely to perform well when evaluated on image sets 
generated by camera motion detection settings as captured wildlife are 
expected to be well within the detection limits of MegaDetector. These 
findings highlight the potential utility of integrating MegaDetector in 
camera trap image processing workflows for many camera trap studies 
using motion detection camera settings as there is only a minor differ-
ence in performance compared to manual human review (Fig. 2) with 
the potential of dramatically increasing efficiency (Beery et al., 2019; 
Fennell et al., 2022; Greenberg, 2020a; Norouzzadeh et al., 2021; Vélez 
et al., 2022). For example, Microsoft reports that a quality consumer 
laptop without dedicated/specialized hardware can process approxi-
mately 4000–10,000 images/day, while using their system, they can 
process approximately 3.8 million images/day using specialized hard-
ware and distributing the workload over many processors (i.e., 16 
NVIDIA V100 GPUs) (Microsoft and for Earth., 2020). Although Mega-
Detector's processing speed is dependent on the hardware it is run on 
and the efficiency of manual human review is influenced by reviewers' 
skill level and amount of scrutiny put into reviewing images, it is likely 

Table 1 
Image set characteristics of wildlife camera trap data from Arctic Alaska.  

Animal Total Number of Images 
with ≥ 1 Present 

Images with ≥ 1 Present 
Based on Camera Trigger 
Type 

Motion 
Detection 

Time-Lapse 

Caribou 2391 (38.4%) 380 (81.7%) 2011 
(34.9%) 

Bird 388 (6.2%) 2 (0.4%) 386 (6.7%) 
Caribou & Bird 62 (1.0%) 7 (1.5%) 55 (1.0%) 
Microtine 13 (0.2%) 0 (0.0%) 13 (0.2%) 
Bird & Ground 

Squirrel 
6 (0.1%) 0 (0.0%) 6 (0.1%) 

Caribou & Ground 
Squirrel 

1 (<0.1%) 0 (0.0%) 1 (<0.1%) 

Fox 1 (<0.1%) 0 (0.0%) 1 (<0.1%) 
None 3362 (54.0%) 76 (16.3%) 3286 

(57.1%) 
Total Images 6224 465 (7.5%) 5759 

(92.5%)  
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far more efficient to process images with AI tools rather than manual 
human review in most cases (Fennell et al., 2022). However, the 
tradeoffs between efficiency and accuracy may not be warranted for 
smaller datasets that are more manageable for manual human review. 

While MegaDetector performed excellent on motion detection im-
ages, we found performance was substantially poorer compared to 
manual human review (55.7% and 61.6% correctly labeled images at the 
> 0% and ≥ 75% detection thresholds, respectively) (Fig. 2) when 
evaluated using images generated by the camera time-lapse setting. This 
result is likely due to the minimum detection size limit of manual human 
reviewers being 15 times smaller compared to MegaDetector (i.e., 4px 
for manual human reviewers and 60px for MegaDetector at the > 0% 
confidence threshold) (Fig. 3). This corresponds with the maximum 
detection distance and area sampled for caribou being 11 and 132 times 
greater, respectively, when manual human review was used to process 
images compared to MegaDetector (Fig. 4). These results support our 
predictions and indicate why there was a greater discrepancy in per-
formance (i.e., proportion of correctly labeled images) between Mega-
Detector and manual human review for time-lapse compared to motion 
detection images (i.e., MegaDetector detected smaller objects than the 
camera motion detection sensor, and manual human reviewers detected 
smaller objects than MegaDetector) (Fig. 2). Additionally, these results 
indicate that the predominant method used to generate images in 
camera trap studies (i.e., camera motion detection) underutilizes both 
computer vision and manual human reviewers' capacity to identify 
wildlife in images, ultimately restricting the potential insight that can be 
gained from model evaluations and camera trapping in general. While 
the apparent size of an object in an image has been suggested to influ-
ence the likelihood of detection (Beery et al., 2018; Greenberg, 2020a; 
Norouzzadeh et al., 2018), to our knowledge, our study represents the 
first to quantify this limitation, providing a performance metric that may 
be more generalizable to different model evaluations and study systems. 

In our system, we found camera motion detection and time-lapse 
trigger settings generated image sets with considerably different char-
acteristics (Table 1), contributing to the differences we observed in 
MegaDetector's performance compared to manual human review 

(Fig. 2). For example, we found time-lapse images contributed six times 
greater total number of images containing ≥1 animal and captured 
several animal groups that were missed by the camera motion detection 
sensor (Table 1). Although there were very few images captured by time- 
lapse of the animal groups missed by motion detection (i.e., microtine, 
ground squirrel, and fox) (Table 1), this information may be particularly 
important for assessments such as occupancy, species richness, or spe-
cies diversity (Burton et al., 2015; Sollmann, 2018; Wearn and Glover- 
kapfer, 2017). This reveals the potential added value of using time- 
lapse settings in open landscapes where targeted animals can be 
observed beyond the camera motion detection range (e.g., tundra, 
treeless alpine, prairie grasslands, or deserts) or for studies targeting 
small or well-insulated species that are unlikely to trigger the camera 
motion detection sensor (Apps and Mcnutt, 2018; Driessen et al., 2017; 
Hamel et al., 2013). We note, however, that our camera installation was 
intended to primarily capture large terrestrial mammals (i.e., cameras 
~1 m above the ground near the shoulder height of caribou), and as 
such, detection of small animals near the ground by motion detection 
was unlikely. We also found image sets differed in the proportion of 
images containing ≥1 animal (i.e., ratio of detections:non-detection), 
with motion detection images having almost two times greater propor-
tion of animal images compared to time-lapse images (i.e., 83.7% and 
42.9%, respectively) (Fig. 2). These results suggest motion detection 
settings in our system were more efficient with respect to battery life and 
data storage with the tradeoff of contributing far fewer detections 
overall as the result of having a dramatically reduced maximum detec-
tion distance and area sampled compared to time-lapse images (Table 1, 
Fig. 4). The ideal camera settings (e.g., motion detection sensitivity, 
time-lapse interval length) to maximize the proportion of images con-
taining animals is likely case specific (i.e., conditional on target species, 
landscape, battery life/data storage, etc.) and may not have been re-
flected in the image collection protocols used in this study. Future 
research may attempt to identify the tradeoffs between these image 
collection considerations and animal detection rates for different study 
systems to inform optimal case-specific image collection protocols. 

As our results demonstrated performance of an automated computer 
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True
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Fig. 2. Summary of the proportion of motion detection and 
time-lapse images correctly labeled with animal presence or 
absence by Microsoft AI for Earth MegaDetector at different 
object detection thresholds (i.e., value indicating the model's 
confidence in assigned labels). Correct labels (i.e., TP – true 
positives, TN – true negatives) are represented in darker shades 
and incorrect labels (i.e., FP – false positives, FTP – false-true 
positives, FN – false negatives) are represented in lighter 
shades and were determined from manual human review. Note: 
Specific values are presented in Table A1.   
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vision model can be influenced by characteristics of the image set used 
in evaluation (Fig. 2), the detection limits (i.e., minimum detection size, 
maximum detection distance/area) we identified may offer camera trap 
users more generalizable and/or practical information to guide planning 
and implementation of study designs. For example, given a particular 
study system (i.e., target species, landscape, field equipment, data 
collection and processing strategy, etc.), understanding the maximum 
detection distance may inform the location and placement of cameras in 
the field (e.g., proximity to trails/travel corridors, bait/lure, etc.) and/or 
help in determining whether potential obstructions should be removed 
or avoided to reduce the possibility of occlusion (i.e., animals blocked by 
tall vegetation, bushes, trees, rocks, or other objects) (Apps and Mcnutt, 
2018). Also, understanding the maximum area sampled may help decide 
which camera trap model(s) to use and how many to budget for, inform 
how to distribute cameras on the landscape, and/or provide spatial 
context by which to interpret data (e.g., were there a greater number of 
animal detections at a particular location because it was more used/ 

preferred by wildlife or because it sampled a larger area compared to 
another) (Burton et al., 2015; Driessen et al., 2017; Rovero et al., 2013; 
Wearn and Glover-kapfer, 2017). As many analytical methods to esti-
mate wildlife metrics from camera trap data benefit from or require 
estimating the distance to detected wildlife and the associated area 
sampled in the camera viewshed (Gilbert et al., 2020; Moeller et al., 
2018; Rowcliffe et al., 2008; Sollmann, 2018), our study provides an 
example of how this information can be generated and how choices of 
camera settings and image processing methods can dramatically impact 
the data available to inform study objectives. While our study and results 
focused on caribou in the vast and open landscape of the Arctic, our 
approach and emphasis in identifying and describing the impacts of 
camera settings and image processing methods on animal detection 
limits has universal merit for all camera trap studies in any ecosystem. 
Similar evaluations would contribute to making more informed and 
intentional data collection and processing decisions across camera trap 
applications. 

Fig. 3. Example of the minimum detection size limit in pixels (px) of caribou for the camera motion detection sensor, MegaDetector, and manual human reviewers. 
Note: the identity of the object detected by manual human reviewers could only be confidently determined to be a caribou given the low diversity of large terrestrial 
species in this study region and by reviewing consecutive images and observing the behavior of the object. 
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4.1. Limitations and considerations 

While we gained valuable insights into the potential impacts of using 
different methods to collect and process camera trap images, there are 
several important things to consider when interpreting our results. First, 
our evaluation of MegaDetector's performance only relates to the most 
common first step of processing camera trap images (i.e., separating 
images with/without animals). Supplemental information such as how 
many individuals are present in images is likely of interest to many 
camera trap researchers for metrics such as relative abundance esti-
mates, density estimates, or demographics (Burton et al., 2015; Sol-
lmann, 2018; Wearn and Glover-kapfer, 2017). However, given animals 
captured in our images were often in large, tightly packed groups, the 
exact number of individuals contained in the image was often unclear 
which made evaluating MegaDetector's individual bounding boxes 
around detected animals somewhat ambiguous as they often contained 
(or partially contained) several individuals (Fig. A2). Therefore, 
consolidating MegaDetector's output to binary image labels (i.e., ≥1 
animal detected or no animals detected) was the most conservative and 

sensible way to evaluate MegaDetector's performance in this system. 
Second, we note that absolutely no customization of MegaDetector 

or editing of the image labels it produced were made for our evaluation, 
meaning our performance results were based on the initial raw output 
from MegaDetector and are inextricably linked to the specific charac-
teristics of the image set we used in evaluations (e.g., ratios of 
detections:non-detections, animal species captured, habitat and topog-
raphy in landscape, etc.). Performance metrics could likely be improved 
by adding a manual human review stage in the workflow (e.g., cor-
recting obvious mislabels) and/or by making customizations to Mega-
Detector by including additional training data from the particular study 
system in which it will be used (Beery et al., 2018, 2019; Greenberg, 
2020a; Norouzzadeh et al., 2021; S. Schneider et al., 2020; Vélez et al., 
2022). This points to the iterative process of improving AI model per-
formance which is likely to continue to improve as more training data 
are made available and new model advancements are evaluated and 
modified. We encourage prospective AI users to carry out similar eval-
uations as performed in this study to gain more relevant information on 
model performance specific to their study systems. However, we antic-
ipate the minimum detection size limits we identified are more gener-
alizable to different study systems provided the model is well trained on 
a particular object class (i.e., under ideal conditions, MegaDetector is 
likely to detect animals when they occupy at least 60px in an image) 
(Fig. 3). Other image characteristics such as complex vegetation, poor 
lighting, low image resolution, and unique camera angles are likely to 
decrease MegaDetector's overall performance (Beery et al., 2018; 
Greenberg, 2020a). 

Third, we acknowledge that the actual task being completed was 
inherently different between MegaDetector and manual human re-
viewers. For example, MegaDetector attempts to find and identify ob-
jects within a single image as opposed to manual human reviewers often 
using a series of images, and the changes between consecutive images, to 
find and identify objects (i.e., manual human reviewers used more in-
formation from the data to draw conclusions). We found when we 
played the 5 min interval time-lapse imagery at rapid frame rates in 
TimeLapse2 (up to 15 frames/s), the still images closely resembled video 
making objects in consecutive images appear as movement rather than 
still objects on an individual image. We found detecting the “motion” of 
objects much easier and consistent than identifying objects from still 
images (Fleming and Tracey, 2008; Greenberg et al., 2019). While the 
task at hand may not be directly comparable between MegaDetector and 
manual human reviewers, our intent was to identify and describe 
characteristics that may reduce or limit the performance of Mega-
Detector (e.g., minimum object detection size), and thinking about how 
these challenges were overcome by manual human review may help 
stimulate thinking and development about how to improve automated 
computer vision methods (e.g., using image series vs still images or 
converting time-lapse images into video). 

Lastly, while we identified and discussed several impacts of using 
different camera trigger settings and image processing methods as they 
relate to limits for detecting wildlife in images, we note that reported 
estimates are solely based on reviewing caribou in images and are likely 
accompanied with some level of error. Future studies may attempt to 
expand the detection limits to a wider variety of animals and in various 
study systems to generate estimates with greater precision and gener-
alizability. We suggest researchers carefully examine the characteristics 
of their study system in regard to what data processing challenges they 
may encounter based on their data collection methods, target species, 
and landscape and what information they need to address study objec-
tives and consider and weigh tradeoffs between efficiency and accuracy 
(Fennell et al., 2022; Greenberg, 2020a; Huang et al., 2017; Nor-
ouzzadeh et al., 2018; S. Schneider et al., 2018, 2020; Thomson et al., 
2018; Tuia et al., 2022; Vélez et al., 2022). 

Fig. 4. Conceptual model of the (a) minimum detection size limits and the 
associated (b) maximum detection distance and area sampled for caribou of the 
camera motion detection sensor, MegaDetector, and manual human reviewers. 
Note: the differences between size, distance, and area are not to scale. 
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5. Conclusions 

In this study, we identified some of the strengths and limitations of 
using AI tools compared to manual human review for detecting wildlife 
in camera trap images. We found Microsoft AI for Earth's state-of-the-art 
object detection model MegaDetector performed exceptionally well at 
detecting wildlife in camera trap images triggered by the camera motion 
detection sensor, however, performance was substantially worse 
compared to manual human review for time-lapse triggered images 
(Fig. 2). We found differences in detection limits (i.e., minimum detec-
tion size, maximum detection distance/area) provided more generaliz-
able and/or practical information to interpret findings and anticipate 
these metrics will help camera trap users make more well informed 
decisions about whether a particular computer vision model may be 
suitable for their specific study conditions (Fig. 4). While there are many 
performance measures commonly used to evaluate automated object 
detection models (e.g., those reported in Table A2), greater dialogue 
among model developers and camera trap users may contribute to 
greater use of metrics with more practical use, interpretation, and 
generalizability such as the detection limits identified in this study. Also, 
as we found performance was strongly influenced by the characteristics 
of the data being evaluated, we strongly encourage future studies pro-
vide detailed descriptions of the image sets generated and used in 
evaluations to aid in interpretation (e.g., how the images were collected, 
which animals were captured, proportions of detections:non-detections, 
characteristics of the landscape, etc.) (Meek et al., 2014; Scotson et al., 
2017). 

AI tools provide an appealing solution for Big Data challenges asso-
ciated with many camera trap studies and we anticipate they will 
continue to improve as more training data are incorporated in model 
development. To facilitate this progress, however, inevitably more 
painstaking manual human review of images will need to occur. While 
no one approach for collecting and processing wildlife camera trap data 
is likely to be optimal for all study systems, our study provides an 

example of how choices of camera trigger settings and image processing 
methods can dramatically influence data available to draw insights from 
and the importance of making well-informed and intentional decisions 
about which methods to use based on study specific conditions. 
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Appendix A. Appendix  

Table A1 
Microsoft AI for Earth MegaDetector model predictions for detection of wildlife in camera trap images from Arctic Alaska.  

Class Label Motion Detection Images Time-Lapse Images 

MegaDetector Detection Threshold MegaDetector Detection Threshold 

> 0% ≥ 25% ≥ 50% ≥ 75% > 0% ≥ 25% ≥50% ≥ 75% 

Correct Predictions True Positives (TP) 377 
(81.1%) 

376 
(80.9%) 

375 
(80.6%) 

372 
(80.0%) 

514 (8.9%) 437 (7.6%) 373 (6.5%) 311 (5.4%) 

True Negatives (TN) 63 (13.5%) 66 (14.2%) 69 (14.8%) 73 (15.7%) 2695 
(46.8%) 

2976 
(51.7%) 

3152 
(54.7%) 

3235 
(56.2%) 

Incorrect 
Predictions 

False Positives (FP) 13 (2.8%) 10 (2.2%) 7 (1.5%) 3 (0.6%) 591 (10.3%) 310 (5.4%) 134 (2.3%) 51 (0.9%) 
False-True Positives 
(FTP) 

5 (1.1%) 2 (0.4%) 1 (0.2%) 1 (0.2%) 368 (6.4%) 237 (4.1%) 145 (2.5%) 102 (1.8%) 

False Negatives (FN) 7 (1.5%) 11 (2.4%) 13 (2.8%) 16 (3.4%) 1591 
(27.6%) 

1799 
(31.2%) 

1955 
(33.9%) 

2060 
(35.8%) 

Note: Values indicate the number of images in the corresponding category with the column proportions presented in parentheses and are represented graphically in 
Fig. 2.  

Table A2 
Summary of performance metrics of Microsoft AI for Earth MegaDetector for detecting wildlife in camera trap images from Arctic Alaska.  

Performance Measure Equation Motion Detection Time Lapse Overall 

MegaDetector Detection 
Threshold 

MegaDetector Detection 
Threshold 

MegaDetector Detection 
Threshold 

> 0 ≥

25 
≥

50 
≥

75 
> 0 ≥

25 
≥

50 
≥

75 
> 0 ≥

25 
≥

50 
≥

75 

TPR (True Positive Rate, 
Recall) 

TP/(TP + FN) 98% 97% 97% 96% 24% 20% 16% 13% 36% 31% 28% 25% 

(continued on next page) 
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Table A2 (continued ) 

Performance Measure Equation Motion Detection Time Lapse Overall 

MegaDetector Detection 
Threshold 

MegaDetector Detection 
Threshold 

MegaDetector Detection 
Threshold 

> 0 ≥

25 
≥

50 
≥

75 
> 0 ≥

25 
≥

50 
≥

75 
> 0 ≥

25 
≥

50 
≥

75 

TNR (True Negative Rate, 
Selectivity) 

TN/(FP + TN) 78% 85% 90% 95% 74% 84% 92% 95% 74% 84% 92% 95% 

FPR (False Positive Rate, fall- 
out) 

FP/(FP + TN) 22% 15% 10% 5% 26% 16% 8% 5% 26% 16% 8% 5% 

FNR (False Negative Rate, miss 
rate) 

FN/(FN + TP) 2% 3% 3% 4% 76% 80% 84% 87% 64% 69% 72% 75% 

PPV (Positive Predictive Value, 
Precision) 

TP/(TP + FP) 95% 97% 98% 99% 35% 44% 57% 67% 48% 59% 72% 81% 

NPV (Negative Predictive 
Value) 

TN/(TN + FN) 90% 86% 84% 82% 63% 62% 62% 61% 63% 63% 62% 61% 

FDR 
(False Discovery Rate) 

FP/(FP + TP) 5% 3% 2% 1% 65% 56% 43% 33% 52% 41% 28% 19% 

FOR 
(False Omission Rate) 

FN/(FN + TN) 10% 14% 16% 18% 37% 38% 38% 39% 37% 37% 38% 39% 

ACC (Accuracy) (TP + TN)/(TP + TN + FP + FN) 95% 95% 95% 96% 56% 59% 61% 62% 59% 62% 64% 64% 
ERR (Error Rate) (FP + FN)/(TP + TN + FP + FN) 5% 5% 5% 4% 47% 42% 40% 39% 44% 40% 37% 36% 
F1 Score (Harmonic mean 

between TPR and PPV) 
(2*TP)/((2*TP) + FP + FN)) 97% 97% 97% 97% 29% 27% 25% 22% 41% 41% 40% 38% 

MCC (Matthews Correlation 
Coefficient) 

((TP*TN)-(FP*FN))/(SQRT((TP + FP)* 
(TP + FN)*(TN + FP)*(TN + FN))) 

81% 82% 84% 86% − 2% 5% 12% 16% 10% 18% 26% 29%  

Fig. A1. Summary of detection limits and associated area sampled for caribou for the camera motion detection sensor, MegaDetector, and manual human reviewers. 
(Supplement to Figs. 3 & 4).  
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Fig. A2. Example of caribou group (a) cropped from original image and (b) labeled by MegaDetector (blue bounding boxes, n = 21) and manual human review 
(yellow dots, n = 16). Note: the exact number of individual caribou contained within the image is uncertain so the accuracy of MegaDetector's individual labels could 
not be determined. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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